These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 28681304)

  • 21. [Study on phytoremediation of phenanthrene-contaminated soil with alfalfa (Medicago sativa L.)].
    Fan SX; Li PJ; Gong ZQ; He N; Zhang LH; Ren WX; Verkhozina VA
    Huan Jing Ke Xue; 2007 Sep; 28(9):2080-4. PubMed ID: 17990561
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of Cu(II) and Cd(II) resistance mechanisms in Sphingobium sp. PHE-SPH and Ochrobactrum sp. PHE-OCH and their potential application in the bioremediation of heavy metal-phenanthrene co-contaminated sites.
    Chen C; Lei W; Lu M; Zhang J; Zhang Z; Luo C; Chen Y; Hong Q; Shen Z
    Environ Sci Pollut Res Int; 2016 Apr; 23(7):6861-72. PubMed ID: 26670028
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Addition of straw from hyperaccumulator plants to cadmium-contaminated soil increases cadmium uptake by loquat seedlings.
    Lin L; Liao M; Lv X; Liang D; Xia H; Wang J; Wang X
    Environ Monit Assess; 2017 May; 189(5):217. PubMed ID: 28411320
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A comprehensive study of the impact of polycyclic aromatic hydrocarbons (PAHs) contamination on salt marsh plants Spartina alterniflora: implication for plant-microbe interactions in phytoremediation.
    Hong Y; Liao D; Chen J; Khan S; Su J; Li H
    Environ Sci Pollut Res Int; 2015 May; 22(9):7071-81. PubMed ID: 25501539
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Breeding the hyperaccumulator Noccaea caerulescens for trace metal phytoextraction: first results of a pure-line selection.
    Sterckeman T; Cazes Y; Sirguey C
    Int J Phytoremediation; 2019; 21(5):448-455. PubMed ID: 30698040
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An analytical deterministic model for simultaneous phytoremediation of Ni and Cd from contaminated soils.
    Davari M; Homaee M; Rahnemaie R
    Environ Sci Pollut Res Int; 2015 Mar; 22(6):4609-20. PubMed ID: 25567058
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The variation of metal fractions and potential environmental risk in phytoremediating multiple metal polluted soils using Noccaea caerulescens assisted by LED lights.
    Luo J; He W; Xing X; Wu J; Sophie Gu XW
    Chemosphere; 2019 Jul; 227():462-469. PubMed ID: 31003131
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Responses of Noccaea caerulescens and Lupinus albus in trace elements-contaminated soils.
    Martínez-Alcalá I; Hernández LE; Esteban E; Walker DJ; Bernal MP
    Plant Physiol Biochem; 2013 May; 66():47-55. PubMed ID: 23466747
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Competence of Cd Phytoremediation in Cd-OCDF Co-contaminated Soil Using Mirabilis jalapa L].
    Zhang XL; Zou W; Zhou QX
    Huan Jing Ke Xue; 2015 Aug; 36(8):3045-55. PubMed ID: 26592039
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cadmium uptake by a hyperaccumulator and three Pennisetum grasses with associated rhizosphere effects.
    Zheng R; Teng W; Hu Y; Hou X; Shi D; Tian X; Scullion J; Wu J
    Environ Sci Pollut Res Int; 2022 Jan; 29(2):1845-1857. PubMed ID: 34363165
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Root and shoot transcriptome analysis of two ecotypes of Noccaea caerulescens uncovers the role of NcNramp1 in Cd hyperaccumulation.
    Milner MJ; Mitani-Ueno N; Yamaji N; Yokosho K; Craft E; Fei Z; Ebbs S; Clemencia Zambrano M; Ma JF; Kochian LV
    Plant J; 2014 May; 78(3):398-410. PubMed ID: 24547775
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phytotoxicity assay of crop plants to phenanthrene and pyrene contaminants in acidic soil.
    Chouychai W; Thongkukiatkul A; Upatham S; Lee H; Pokethitiyook P; Kruatrachue M
    Environ Toxicol; 2007 Dec; 22(6):597-604. PubMed ID: 18000845
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The response of the accumulator plants Noccaea caerulescens, Noccaea goesingense and Plantago major towards the uranium.
    Burger A; Weidinger M; Baumann N; Vesely A; Lichtscheidl I
    J Environ Radioact; 2021 Apr; 229-230():106544. PubMed ID: 33556790
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Effect of the soil bulk density on the root morphology and cadmium uptake by Thlaspi caerulescens grown on Cd-contaminated soil].
    Yang Y; Jiang RF; Li HF; Wang W; Zheng RL
    Huan Jing Ke Xue; 2010 Dec; 31(12):3043-9. PubMed ID: 21360897
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Root development of non-accumulating and hyperaccumulating plants in metal-contaminated soils amended with biochar.
    Rees F; Sterckeman T; Morel JL
    Chemosphere; 2016 Jan; 142():48-55. PubMed ID: 25912633
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Citric acid assisted phytoremediation of cadmium by Brassica napus L.
    Ehsan S; Ali S; Noureen S; Mahmood K; Farid M; Ishaque W; Shakoor MB; Rizwan M
    Ecotoxicol Environ Saf; 2014 Aug; 106():164-72. PubMed ID: 24840879
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of cowpea (Vigna unguiculata) root mucilage on microbial community response and capacity for phenanthrene remediation.
    Sun R; Belcher RW; Liang J; Wang L; Thater B; Crowley DE; Wei G
    J Environ Sci (China); 2015 Jul; 33():45-59. PubMed ID: 26141877
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Assembly strategies of the wheat root-associated microbiome in soils contaminated with phenanthrene and copper.
    Xu Y; Ge Y; Lou Y; Meng J; Shi L; Xia F
    J Hazard Mater; 2021 Jun; 412():125340. PubMed ID: 33951882
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phytoremediation of soils contaminated with phenanthrene and cadmium by growing willow (Salix × aureo-pendula CL 'j1011').
    Sun YY; Xu HX; Li JH; Shi XQ; Wu JC; Ji R; Guo HY
    Int J Phytoremediation; 2016; 18(2):150-6. PubMed ID: 26247604
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cadmium induces hypodermal periderm formation in the roots of the monocotyledonous medicinal plant Merwilla plumbea.
    Lux A; Vaculík M; Martinka M; Lisková D; Kulkarni MG; Stirk WA; Van Staden J
    Ann Bot; 2011 Feb; 107(2):285-92. PubMed ID: 21118841
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.