These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 28681599)

  • 61. Genetic mapping of genes for susceptibility to black spot disease in Japanese pears.
    Terakami S; Adachi Y; Iketani H; Sato Y; Sawamura Y; Takada N; Nishitani C; Yamamoto T
    Genome; 2007 Aug; 50(8):735-41. PubMed ID: 17893733
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Antifungal Metabolite p-Aminobenzoic Acid (pABA): Mechanism of Action and Efficacy for the Biocontrol of Pear Bitter Rot Disease.
    Laborda P; Li C; Zhao Y; Tang B; Ling J; He F; Liu F
    J Agric Food Chem; 2019 Feb; 67(8):2157-2165. PubMed ID: 30735380
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Antioxidant activity of butane type lignans, secoisolariciresinol, dihydroguaiaretic acid, and 7,7'-oxodihydroguaiaretic acid.
    Yamauchi S; Masuda T; Sugahara T; Kawaguchi Y; Ohuchi M; Someya T; Akiyama J; Tominaga S; Yamawaki M; Kishida T; Akiyama K; Maruyama M
    Biosci Biotechnol Biochem; 2008 Nov; 72(11):2981-6. PubMed ID: 18997397
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Distribution and Characterization of AKT Homologs in the Tangerine Pathotype of Alternaria alternata.
    Masunaka A; Tanaka A; Tsuge T; Peever TL; Timmer LW; Yamamoto M; Yamamoto H; Akimitsu K
    Phytopathology; 2000 Jul; 90(7):762-8. PubMed ID: 18944496
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Larvicidal activity of (-)-dihydroguaiaretic acid derivatives against Culex pipiens.
    Nishiwaki H; Hasebe A; Kawaguchi Y; Akamatsu M; Shuto Y; Yamauchi S
    Biosci Biotechnol Biochem; 2011; 75(9):1735-9. PubMed ID: 21897049
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Identification of 6-prenylindole as an antifungal metabolite of Streptomyces sp. TP-A0595 and synthesis and bioactivity of 6-substituted indoles.
    Sasaki T; Igarashi Y; Ogawa M; Furumai T
    J Antibiot (Tokyo); 2002 Nov; 55(11):1009-12. PubMed ID: 12546422
    [No Abstract]   [Full Text] [Related]  

  • 67. Cross-resistance of the pathogenic fungus Alternaria alternata to fungicides with different modes of action.
    Yang LN; He MH; Ouyang HB; Zhu W; Pan ZC; Sui QJ; Shang LP; Zhan J
    BMC Microbiol; 2019 Sep; 19(1):205. PubMed ID: 31477005
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Antifungal activities of some indole derivatives.
    Xu H; Wang Q; Yang WB
    Z Naturforsch C J Biosci; 2010; 65(7-8):437-9. PubMed ID: 20737910
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Defense Responses, Induced by p-Coumaric Acid and Methyl p-Coumarate, of Jujube ( Ziziphus jujuba Mill.) Fruit against Black Spot Rot Caused by Alternaria alternata.
    Yuan S; Li W; Li Q; Wang L; Cao J; Jiang W
    J Agric Food Chem; 2019 Mar; 67(10):2801-2810. PubMed ID: 30794401
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A Major Facilitator Superfamily Transporter-Mediated Resistance to Oxidative Stress and Fungicides Requires Yap1, Skn7, and MAP Kinases in the Citrus Fungal Pathogen Alternaria alternata.
    Chen LH; Tsai HC; Yu PL; Chung KR
    PLoS One; 2017; 12(1):e0169103. PubMed ID: 28060864
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Synthesis and antifungal activities of some 2,6-bis-(un)substituted phenoxymethylpyridines.
    Xu H; Qu H
    Z Naturforsch C J Biosci; 2010; 65(7-8):433-6. PubMed ID: 20737909
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Control of human and plant fungal pathogens using pentaene macrolide 32, 33-didehydroroflamycoin.
    Milisavljevic M; Zivkovic S; Pekmezovic M; Stankovic N; Vojnovic S; Vasiljevic B; Senerovic L
    J Appl Microbiol; 2015 Jun; 118(6):1426-34. PubMed ID: 25810243
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Stilbene Derivatives from Photorhabdus temperata SN259 and Their Antifungal Activities against Phytopathogenic Fungi.
    Shi D; An R; Zhang W; Zhang G; Yu Z
    J Agric Food Chem; 2017 Jan; 65(1):60-65. PubMed ID: 27960253
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Global antifungal profile optimization of chlorophenyl derivatives against Botrytis cinerea and Colletotrichum gloeosporioides.
    Saiz-Urra L; Bustillo Pérez AJ; Cruz-Monteagudo M; Pinedo-Rivilla C; Aleu J; Hernández-Galán R; Collado IG
    J Agric Food Chem; 2009 Jun; 57(11):4838-43. PubMed ID: 19489624
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Synthesis and antifungal activity of ethers, alcohols, and iodohydrin derivatives of sclareol against phytopathogenic fungi in vitro.
    Ma M; Feng J; Li R; Chen SW; Xu H
    Bioorg Med Chem Lett; 2015 Jul; 25(14):2773-7. PubMed ID: 26013848
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The antifungal activity of extracts of Osmundea pinnatifida, an edible seaweed, indicates its usage as a safe environmental fungicide or as a food additive preventing post-harvest fungal food contamination.
    Silva P; Fernandes C; Barros L; Ferreira ICFR; Pereira L; Gonçalves T
    Food Funct; 2018 Dec; 9(12):6187-6195. PubMed ID: 30457140
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Phenology-Based Management of Alternaria Fruit Rot in Pink Lady Apples.
    Gur L; Reuveni M; Cohen Y
    Plant Dis; 2018 Jun; 102(6):1072-1080. PubMed ID: 30673439
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Antifungal activity of CHE-23C, a dimeric sesquiterpene from Chloranthus henryi.
    Lee YM; Moon JS; Yun BS; Park KD; Choi GJ; Kim JC; Lee SH; Kim SU
    J Agric Food Chem; 2009 Jul; 57(13):5750-5. PubMed ID: 19566082
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Regiospecific and Enantiospecific Effects of the β-Benzyl-α-benzylidene-γ-butyrolactone Structure on Phytotoxic Fungi.
    Sartiva H; Nishiwaki H; Akiyama K; Yamauchi S
    J Agric Food Chem; 2023 May; 71(17):6738-6746. PubMed ID: 37083414
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Natural products as sources of new fungicides (III): Antifungal activity of 2,4-dihydroxy-5-methylacetophenone derivatives.
    Shi W; Dan WJ; Tang JJ; Zhang Y; Nandinsuren T; Zhang AL; Gao JM
    Bioorg Med Chem Lett; 2016 May; 26(9):2156-8. PubMed ID: 27025344
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.