These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
540 related articles for article (PubMed ID: 28681663)
1. Graphene oxide-methylene blue nanocomposite in photodynamic therapy of human breast cancer. Hosseinzadeh R; Khorsandi K; Hosseinzadeh G J Biomol Struct Dyn; 2018 Jul; 36(9):2216-2223. PubMed ID: 28681663 [TBL] [Abstract][Full Text] [Related]
2. Pluronic-based graphene oxide-methylene blue nanocomposite for photodynamic/photothermal combined therapy of cancer cells. Ma M; Cheng L; Zhao A; Zhang H; Zhang A Photodiagnosis Photodyn Ther; 2020 Mar; 29():101640. PubMed ID: 31899381 [TBL] [Abstract][Full Text] [Related]
3. Nanographene oxide-methylene blue as phototherapies platform for breast tumor ablation and metastasis prevention in a syngeneic orthotopic murine model. Dos Santos MSC; Gouvêa AL; de Moura LD; Paterno LG; de Souza PEN; Bastos AP; Damasceno EAM; Veiga-Souza FH; de Azevedo RB; Báo SN J Nanobiotechnology; 2018 Jan; 16(1):9. PubMed ID: 29382332 [TBL] [Abstract][Full Text] [Related]
4. Methylene blue, curcumin and ion pairing nanoparticles effects on photodynamic therapy of MDA-MB-231 breast cancer cell. Hosseinzadeh R; Khorsandi K Photodiagnosis Photodyn Ther; 2017 Jun; 18():284-294. PubMed ID: 28300724 [TBL] [Abstract][Full Text] [Related]
5. Directed molecular assembly into a biocompatible photosensitizing nanocomplex for locoregional photodynamic therapy. Lee YD; Cho HJ; Choi MH; Park H; Bang J; Lee S; Kwon IC; Kim S J Control Release; 2015 Jul; 209():12-9. PubMed ID: 25872152 [TBL] [Abstract][Full Text] [Related]
6. Combination photodynamic therapy of human breast cancer using salicylic acid and methylene blue. Hosseinzadeh R; Khorsandi K; Jahanshiri M Spectrochim Acta A Mol Biomol Spectrosc; 2017 Sep; 184():198-203. PubMed ID: 28499173 [TBL] [Abstract][Full Text] [Related]
7. Graphene oxide edge grafting of polyaniline nanocomposite: an efficient adsorbent for methylene blue and methyl orange. Wang H; Duan M; Guo Y; Wang C; Shi Z; Liu J; Lv J Water Sci Technol; 2018 Jul; 77(11-12):2751-2760. PubMed ID: 30065127 [TBL] [Abstract][Full Text] [Related]
8. Anticancer Photodynamic Therapy Properties of Sulfur-Doped Graphene Quantum Dot and Methylene Blue Preparations in MCF-7 Breast Cancer Cell Culture. Monroe JD; Belekov E; Er AO; Smith ME Photochem Photobiol; 2019 Nov; 95(6):1473-1481. PubMed ID: 31230353 [TBL] [Abstract][Full Text] [Related]
9. Comparative study of photodynamic activity of methylene blue in the presence of salicylic acid and curcumin phenolic compounds on human breast cancer. Khorsandi K; Chamani E; Hosseinzadeh G; Hosseinzadeh R Lasers Med Sci; 2019 Mar; 34(2):239-246. PubMed ID: 29959633 [TBL] [Abstract][Full Text] [Related]
10. Methylene blue photodynamic therapy induces selective and massive cell death in human breast cancer cells. Dos Santos AF; Terra LF; Wailemann RA; Oliveira TC; Gomes VM; Mineiro MF; Meotti FC; Bruni-Cardoso A; Baptista MS; Labriola L BMC Cancer; 2017 Mar; 17(1):194. PubMed ID: 28298203 [TBL] [Abstract][Full Text] [Related]
11. Nanoparticles of methylene blue enhance photodynamic therapy. Jesus VPS; Raniero L; Lemes GM; Bhattacharjee TT; Caetano Júnior PC; Castilho ML Photodiagnosis Photodyn Ther; 2018 Sep; 23():212-217. PubMed ID: 29928992 [TBL] [Abstract][Full Text] [Related]
12. Photodynamic effect of Zirconium phosphate biocompatible nano-bilayers containing methylene blue on cancer and normal cells. Hosseinzadeh R; Khorsandi K Sci Rep; 2019 Oct; 9(1):14899. PubMed ID: 31624290 [TBL] [Abstract][Full Text] [Related]
14. Facile synthesis of zinc oxide nanoparticles decorated graphene oxide composite via simple solvothermal route and their photocatalytic activity on methylene blue degradation. Atchudan R; Edison TNJI; Perumal S; Karthikeyan D; Lee YR J Photochem Photobiol B; 2016 Sep; 162():500-510. PubMed ID: 27459420 [TBL] [Abstract][Full Text] [Related]
15. Development of therapeutic Au-methylene blue nanoparticles for targeted photodynamic therapy of cervical cancer cells. Yu J; Hsu CH; Huang CC; Chang PY ACS Appl Mater Interfaces; 2015 Jan; 7(1):432-41. PubMed ID: 25494339 [TBL] [Abstract][Full Text] [Related]
16. In vitro investigation of methylene blue-bearing, electrostatically assembled aptamer-silica nanocomposites as potential photodynamic therapeutics. Ding TS; Huang XC; Luo YL; Hsu HY Colloids Surf B Biointerfaces; 2015 Nov; 135():217-224. PubMed ID: 26255165 [TBL] [Abstract][Full Text] [Related]
17. Graphene oxide-fullerene C Li Q; Hong L; Li H; Liu C Biosens Bioelectron; 2017 Mar; 89(Pt 1):477-482. PubMed ID: 27055602 [TBL] [Abstract][Full Text] [Related]
18. Enhancement of the photokilling effect of TiO Shang H; Han D; Ma M; Li S; Xue W; Zhang A J Photochem Photobiol B; 2017 Dec; 177():112-123. PubMed ID: 29089229 [TBL] [Abstract][Full Text] [Related]
19. One-pot green synthesis of reduced graphene oxide (RGO)/Fe3O4 nanocomposites and its catalytic activity toward methylene blue dye degradation. Vinothkannan M; Karthikeyan C; Gnana kumar G; Kim AR; Yoo DJ Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 136 Pt B():256-64. PubMed ID: 25311523 [TBL] [Abstract][Full Text] [Related]
20. Nano-formulation of a photosensitizer using a DNA tetrahedron and its potential for in vivo photodynamic therapy. Kim KR; Bang D; Ahn DR Biomater Sci; 2016 Apr; 4(4):605-9. PubMed ID: 26674121 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]