BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 28681863)

  • 1. Applicability of MIL-101(Fe) as a cathode of lithium ion batteries.
    Yamada T; Shiraishi K; Kitagawa H; Kimizuka N
    Chem Commun (Camb); 2017 Jul; 53(58):8215-8218. PubMed ID: 28681863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal-Organic Framework Structure with Fe-Co-Se (MIL-88A/Fe-Co@Se) as a Cathode for Aluminum Batteries.
    Wu G; Lv W; Li X; Zhang W; Li Z
    ACS Appl Mater Interfaces; 2021 Dec; 13(51):61107-61115. PubMed ID: 34919372
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flakelike LiCoO2 with Exposed {010} Facets As a Stable Cathode Material for Highly Reversible Lithium Storage.
    Wu N; Zhang Y; Guo Y; Liu S; Liu H; Wu H
    ACS Appl Mater Interfaces; 2016 Feb; 8(4):2723-31. PubMed ID: 26760433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multifunctional AlPO4 coating for improving electrochemical properties of low-cost Li[Li0.2Fe0.1Ni0.15Mn0.55]O2 cathode materials for lithium-ion batteries.
    Wu F; Zhang X; Zhao T; Li L; Xie M; Chen R
    ACS Appl Mater Interfaces; 2015 Feb; 7(6):3773-81. PubMed ID: 25629768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced electrochemical properties of LiFePO4 (LFP) cathode using the carboxymethyl cellulose lithium (CMC-Li) as novel binder in lithium-ion battery.
    Qiu L; Shao Z; Wang D; Wang W; Wang F; Wang J
    Carbohydr Polym; 2014 Oct; 111():588-91. PubMed ID: 25037391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Constructing heterostructured Li-Fe-Ni-Mn-O cathodes for lithium-ion batteries: effective improvement of ultrafast lithium storage.
    Zhao T; Zhou N; Zhang X; Xue Q; Wang Y; Yang M; Li L; Chen R
    Phys Chem Chem Phys; 2017 Aug; 19(33):22494-22501. PubMed ID: 28808715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel polymer Li-ion binder carboxymethyl cellulose derivative enhanced electrochemical performance for Li-ion batteries.
    Qiu L; Shao Z; Wang D; Wang F; Wang W; Wang J
    Carbohydr Polym; 2014 Nov; 112():532-8. PubMed ID: 25129778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lithium-Rich Layered Oxide Li1.18 Ni0.15 Co0.15 Mn0.52 O2 as the Cathode Material for Hybrid Sodium-Ion Batteries.
    Wei Z; Gao Y; Wang L; Zhang C; Bian X; Fu Q; Wang C; Wei Y; Du F; Chen G
    Chemistry; 2016 Aug; 22(33):11610-6. PubMed ID: 27320123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Li2C2, a High-Capacity Cathode Material for Lithium Ion Batteries.
    Tian N; Gao Y; Li Y; Wang Z; Song X; Chen L
    Angew Chem Int Ed Engl; 2016 Jan; 55(2):644-8. PubMed ID: 26609636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis-microstructure-performance relationship of layered transition metal oxides as cathode for rechargeable sodium batteries prepared by high-temperature calcination.
    Xie M; Luo R; Lu J; Chen R; Wu F; Wang X; Zhan C; Wu H; Albishri HM; Al-Bogami AS; El-Hady DA; Amine K
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):17176-83. PubMed ID: 25192293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organic-acid-assisted fabrication of low-cost Li-rich cathode material (Li[Li1/6Fe1/6Ni1/6Mn1/2]O2) for lithium-ion battery.
    Zhao T; Chen S; Li L; Zhang X; Wu H; Wu T; Sun CJ; Chen R; Wu F; Lu J; Amine K
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22305-15. PubMed ID: 25412470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Zinc-Reduced Mesoporous TiO
    Song WJ; Yoo S; Lee JI; Han JG; Son Y; Kim SI; Shin M; Choi S; Jang JH; Cho J; Choi NS; Park S
    Chem Asian J; 2016 Dec; 11(23):3382-3388. PubMed ID: 27661460
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A feasibility study on the use of Li(4)V(3)O(8) as a high capacity cathode material for lithium-ion batteries.
    Ng SH; Tran N; Bramnik KG; Hibst H; Novák P
    Chemistry; 2008; 14(35):11141-8. PubMed ID: 18979463
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A mixed iron-manganese based pyrophosphate cathode, Na2Fe0.5Mn0.5P2O7, for rechargeable sodium ion batteries.
    Shakoor RA; Park CS; Raja AA; Shin J; Kahraman R
    Phys Chem Chem Phys; 2016 Feb; 18(5):3929-35. PubMed ID: 26765283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fe
    Song SH; Alonso JA
    ACS Appl Mater Interfaces; 2021 Nov; 13(46):55172-55177. PubMed ID: 34780694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of LiF/Fe/Graphene nanocomposites as cathode material for lithium-ion batteries.
    Ma R; Dong Y; Xi L; Yang S; Lu Z; Chung C
    ACS Appl Mater Interfaces; 2013 Feb; 5(3):892-7. PubMed ID: 23298407
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ formed lithium sulfide/microporous carbon cathodes for lithium-ion batteries.
    Zheng S; Chen Y; Xu Y; Yi F; Zhu Y; Liu Y; Yang J; Wang C
    ACS Nano; 2013 Dec; 7(12):10995-1003. PubMed ID: 24251957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural and Electrochemical Study of Hierarchical LiNi(1/3)Co(1/3)Mn(1/3)O2 Cathode Material for Lithium-Ion Batteries.
    Li L; Wang L; Zhang X; Xie M; Wu F; Chen R
    ACS Appl Mater Interfaces; 2015 Oct; 7(39):21939-47. PubMed ID: 26371492
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dependence of structure and temperature for lithium-rich layered-spinel microspheres cathode material of lithium ion batteries.
    Wang D; Yu R; Wang X; Ge L; Yang X
    Sci Rep; 2015 Feb; 5():8403. PubMed ID: 25672573
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.