These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
224 related articles for article (PubMed ID: 28681924)
1. Improved transoral dissection of the tongue base with a next-generation robotic surgical system. Chen MM; Orosco RK; Lim GC; Holsinger FC Laryngoscope; 2018 Jan; 128(1):78-83. PubMed ID: 28681924 [TBL] [Abstract][Full Text] [Related]
2. A flexible, single-arm robotic surgical system for transoral resection of the tonsil and lateral pharyngeal wall: Next-generation robotic head and neck surgery. Holsinger FC Laryngoscope; 2016 Apr; 126(4):864-9. PubMed ID: 26509920 [TBL] [Abstract][Full Text] [Related]
3. Flexible next-generation robotic surgical system for transoral endoscopic hypopharyngectomy: A comparative preclinical study. Tateya I; Koh YW; Tsang RK; Hong SS; Uozumi R; Kishimoto Y; Sugimoto T; Holsinger FC Head Neck; 2018 Jan; 40(1):16-23. PubMed ID: 29130568 [TBL] [Abstract][Full Text] [Related]
4. Transoral endoscopic nasopharyngectomy with a flexible next-generation robotic surgical system. Tsang RK; Holsinger FC Laryngoscope; 2016 Oct; 126(10):2257-62. PubMed ID: 27312523 [TBL] [Abstract][Full Text] [Related]
5. Transoral robotic surgery in the seated position: Rethinking our operative approach. Moore EJ; Van Abel KM; Olsen KD Laryngoscope; 2017 Jan; 127(1):122-126. PubMed ID: 27377239 [TBL] [Abstract][Full Text] [Related]
6. The Settings, Pros and Cons of the New Surgical Robot da Vinci Xi System for Transoral Robotic Surgery (TORS): A Comparison With the Popular da Vinci Si System. Kim DH; Kim H; Kwak S; Baek K; Na G; Kim JH; Kim SH Surg Laparosc Endosc Percutan Tech; 2016 Oct; 26(5):391-396. PubMed ID: 27661201 [TBL] [Abstract][Full Text] [Related]
7. Transoral robotic thyroidectomy on two human cadavers using the Intuitive da Vinci single port robotic surgical system and CO Park D; Shaear M; Chen YH; Russell JO; Kim HY; Tufano RP Head Neck; 2019 Dec; 41(12):4229-4233. PubMed ID: 31469475 [TBL] [Abstract][Full Text] [Related]
8. Transoral Surgical Anatomy and Clinical Considerations of Lateral Oropharyngeal Wall, Parapharyngeal Space, and Tongue Base. Gun R; Durmus K; Kucur C; Carrau RL; Ozer E Otolaryngol Head Neck Surg; 2016 Mar; 154(3):480-5. PubMed ID: 26814206 [TBL] [Abstract][Full Text] [Related]
9. Next-Generation Robotic Head and Neck Surgery. Orosco RK; Arora A; Jeannon JP; Holsinger FC ORL J Otorhinolaryngol Relat Spec; 2018; 80(3-4):213-219. PubMed ID: 30404095 [TBL] [Abstract][Full Text] [Related]
10. Transoral supraglottic laryngectomy using a next-generation single-port robotic surgical system. Orosco RK; Tam K; Nakayama M; Holsinger FC; Spriano G Head Neck; 2019 Jul; 41(7):2143-2147. PubMed ID: 30775823 [TBL] [Abstract][Full Text] [Related]
11. Transoral robotic thyroidectomy: a preclinical feasibility study using the da Vinci Xi platform. Russell JO; Noureldine SI; Al Khadem MG; Chaudhary HA; Day AT; Kim HY; Tufano RP; Richmon JD J Robot Surg; 2017 Sep; 11(3):341-346. PubMed ID: 28155047 [TBL] [Abstract][Full Text] [Related]
12. Transoral robotic surgery for the base of tongue squamous cell carcinoma: a preliminary comparison between da Vinci Xi and Si. Alessandrini M; Pavone I; Micarelli A; Caporale C J Robot Surg; 2018 Sep; 12(3):417-423. PubMed ID: 28905287 [TBL] [Abstract][Full Text] [Related]
13. Does transition from the da Vinci Si to Xi robotic platform impact single-docking technique for robot-assisted laparoscopic nephroureterectomy? Patel MN; Aboumohamed A; Hemal A BJU Int; 2015 Dec; 116(6):990-4. PubMed ID: 26123244 [TBL] [Abstract][Full Text] [Related]
14. Submandibular gland resection via the trans-hairline approach: A preclinical study of a novel flexible single-port surgical system and the surgical experiences of standard multiarm robotic surgical systems. Yang TL; Li H; Holsinger FC; Koh YW Head Neck; 2019 Jul; 41(7):2231-2238. PubMed ID: 30896063 [TBL] [Abstract][Full Text] [Related]
15. Transoral robotic surgery (TORS) for base of tongue neoplasms. O'Malley BW; Weinstein GS; Snyder W; Hockstein NG Laryngoscope; 2006 Aug; 116(8):1465-72. PubMed ID: 16885755 [TBL] [Abstract][Full Text] [Related]
16. Transoral robotic geniohyoidpexy as an additional step of transoral robotic tongue base reduction and supraglottoplasty: feasibility in a cadaver model. Vicini C; Montevecchi F; Dallan I; Canzi P; Tenti G ORL J Otorhinolaryngol Relat Spec; 2011; 73(3):147-50. PubMed ID: 21508654 [TBL] [Abstract][Full Text] [Related]
17. Port positioning and docking for single-stage totally robotic dissection for rectal cancer surgery with the Si and Xi Da Vinci Surgical System. Toh JWT; Kim SH J Robot Surg; 2018 Sep; 12(3):545-548. PubMed ID: 29103087 [TBL] [Abstract][Full Text] [Related]
18. Robotic transoral periosteal thyroidectomy (TOPOT): experience in two cadavers. Lee HY; Richmon JD; Walvekar RR; Holsinger C; Kim HY J Laparoendosc Adv Surg Tech A; 2015 Feb; 25(2):139-42. PubMed ID: 25629368 [TBL] [Abstract][Full Text] [Related]
19. Evolution of robotic systems for transoral head and neck surgery. Poon H; Li C; Gao W; Ren H; Lim CM Oral Oncol; 2018 Dec; 87():82-88. PubMed ID: 30527249 [TBL] [Abstract][Full Text] [Related]