These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 28681974)

  • 1. Supramolecular gel electrophoresis of large DNA fragments.
    Tazawa S; Kobayashi K; Oyoshi T; Yamanaka M
    Electrophoresis; 2017 Oct; 38(20):2662-2665. PubMed ID: 28681974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The electric field dependence of DNA mobilities in agarose gels: a reinvestigation.
    Holmes DL; Stellwagen NC
    Electrophoresis; 1990 Jan; 11(1):5-15. PubMed ID: 2318191
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Supramolecular gel electrophoresis of acidic native proteins.
    Munenobu K; Hase T; Oyoshi T; Yamanaka M
    Anal Chem; 2014 Oct; 86(19):9924-9. PubMed ID: 25147927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid separation of DNA molecules by agarose gel electrophoresis: use of a new agarose matrix and a survey of running buffer effects.
    White HW
    Biotechniques; 1992 Apr; 12(4):574-9. PubMed ID: 1503759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Capacitively-induced pulsed-field gel electrophoresis: a novel method for DNA separation.
    Ghourchian H; Elyasvandi H
    Med Eng Phys; 2005 Oct; 27(8):723-7. PubMed ID: 15916914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Separation of large DNA molecules with high voltage pulsed field gel electrophoresis.
    Wagner L; Lai E
    Electrophoresis; 1994; 15(8-9):1078-83. PubMed ID: 7859711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Separation of large circular DNA by electrophoresis in agarose gels.
    Cole KD; Tellez CM
    Biotechnol Prog; 2002; 18(1):82-7. PubMed ID: 11822904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Techniques and high resolution DNA size markers for pulsed field gel electrophoresis.
    Cooney CA
    Mol Biotechnol; 1994 Oct; 2(2):119-27. PubMed ID: 7866871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-resolution hydrodynamic chromatographic separation of large DNA using narrow, bare open capillaries: a rapid and economical alternative technology to pulsed-field gel electrophoresis?
    Liu L; Veerappan V; Pu Q; Cheng C; Wang X; Lu L; Allen RD; Guo G
    Anal Chem; 2014 Jan; 86(1):729-36. PubMed ID: 24274685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accurate evaluation of the sizes of DNA fragments (from 30 to 4700 kb) in pulse field gel electrophoresis.
    Crété N; Delabar JM; Sinet PM; Créau-Goldberg N
    Biotechniques; 1991 Dec; 11(6):711-2, 714, 716 passim. PubMed ID: 1667081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Do DNA gel electrophoretic mobilities extrapolate to the free-solution mobility of DNA at zero gel concentration?
    Strutz K; Stellwagen NC
    Electrophoresis; 1998 May; 19(5):635-42. PubMed ID: 9629889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pulsed field separation of large supercoiled and open-circular DNAs and its application to bacterial artificial chromosome cloning.
    Wang M; Lai E
    Electrophoresis; 1995 Jan; 16(1):1-7. PubMed ID: 7737080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Is pulsed electric field still effective for RNA separation in capillary electrophoresis?
    Li Z; Dou X; Ni Y; Chen Q; Cheng S; Yamaguchi Y
    J Chromatogr A; 2012 Mar; 1229():274-9. PubMed ID: 22310278
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of pH-Responsive Supramolecular Hydrogels in Basic Buffers: Self-assembly of Amphiphilic Tris-Urea.
    Kimura S; Haraya N; Komiyama T; Yokoya M; Yamanaka M
    Chem Pharm Bull (Tokyo); 2021; 69(11):1131-1135. PubMed ID: 34719596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Separation of long DNA molecules by quartz nanopillar chips under a direct current electric field.
    Kaji N; Tezuka Y; Takamura Y; Ueda M; Nishimoto T; Nakanishi H; Horiike Y; Baba Y
    Anal Chem; 2004 Jan; 76(1):15-22. PubMed ID: 14697027
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrophoretic DNA analysis for the detection of apoptosis.
    Allen PD; Newland AC
    Mol Biotechnol; 1998 Jun; 9(3):247-51. PubMed ID: 9718585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of higher-order 50- and 10-kbp DNA fragments before apoptotic internucleosomal cleavage after transient cerebral ischemia.
    MacManus JP; Rasquinha I; Tuor U; Preston E
    J Cereb Blood Flow Metab; 1997 Apr; 17(4):376-87. PubMed ID: 9143220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of the initial stages of DNA fragmentation in apoptosis.
    Walker PR; Kokileva L; LeBlanc J; Sikorska M
    Biotechniques; 1993 Dec; 15(6):1032-40. PubMed ID: 8292335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of DNA fragmentation and endonucleases in apoptosis.
    Walker PR; Leblanc J; Smith B; Pandey S; Sikorska M
    Methods; 1999 Apr; 17(4):329-38. PubMed ID: 10196104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discontinuous electrophoresis revisited: a review of the process.
    Allen RC; Doktycz MJ
    Appl Theor Electrophor; 1996; 6(1):1-9. PubMed ID: 9072074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.