These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 28682078)
1. Insight into Water Structure at the Surfactant Surfaces and in Microemulsion Confinement. Dutta C; Svirida A; Mammetkuliyev M; Rukhadze M; Benderskii AV J Phys Chem B; 2017 Aug; 121(31):7447-7454. PubMed ID: 28682078 [TBL] [Abstract][Full Text] [Related]
2. Dynamics of water at the interface in reverse micelles: measurements of spectral diffusion with two-dimensional infrared vibrational echoes. Fenn EE; Wong DB; Giammanco CH; Fayer MD J Phys Chem B; 2011 Oct; 115(40):11658-70. PubMed ID: 21899355 [TBL] [Abstract][Full Text] [Related]
3. Interfacial properties modulated by the water confinement in reverse micelles created by the ionic liquid-like surfactant bmim-AOT. Lépori CMO; Correa NM; Silber JJ; Vaca Chávez F; Falcone RD Soft Matter; 2019 Jan; 15(5):947-955. PubMed ID: 30644504 [TBL] [Abstract][Full Text] [Related]
4. Polarization and experimental configuration analyses of sum frequency generation vibrational spectra, structure, and orientational motion of the air/water interface. Gan W; Wu D; Zhang Z; Feng RR; Wang HF J Chem Phys; 2006 Mar; 124(11):114705. PubMed ID: 16555908 [TBL] [Abstract][Full Text] [Related]
5. Water dynamics--the effects of ions and nanoconfinement. Park S; Moilanen DE; Fayer MD J Phys Chem B; 2008 May; 112(17):5279-90. PubMed ID: 18370431 [TBL] [Abstract][Full Text] [Related]
6. The surface roughness, but not the water molecular orientation varies with temperature at the water-air interface. Nagata Y; Hasegawa T; Backus EH; Usui K; Yoshimune S; Ohto T; Bonn M Phys Chem Chem Phys; 2015 Sep; 17(36):23559-64. PubMed ID: 26299523 [TBL] [Abstract][Full Text] [Related]
7. Cooperative Effects of Zwitterionic-Ionic Surfactant Mixtures on the Interfacial Water Structure Revealed by Sum Frequency Generation Vibrational Spectroscopy. Pan X; Yang F; Chen S; Zhu X; Wang C Langmuir; 2018 May; 34(18):5273-5278. PubMed ID: 29672067 [TBL] [Abstract][Full Text] [Related]
8. Ultrafast energy transfer in water-AOT reverse micelles. Cringus D; Bakulin A; Lindner J; Vöhringer P; Pshenichnikov MS; Wiersma DA J Phys Chem B; 2007 Dec; 111(51):14193-207. PubMed ID: 18047308 [TBL] [Abstract][Full Text] [Related]
9. IR and SFG vibrational spectroscopy of the water bend in the bulk liquid and at the liquid-vapor interface, respectively. Ni Y; Skinner JL J Chem Phys; 2015 Jul; 143(1):014502. PubMed ID: 26156483 [TBL] [Abstract][Full Text] [Related]
10. Effect of the cationic surfactant moiety on the structure of water entrapped in two catanionic reverse micelles created from ionic liquid-like surfactants. Villa CC; Silber JJ; Correa NM; Falcone RD Chemphyschem; 2014 Oct; 15(14):3097-109. PubMed ID: 25044685 [TBL] [Abstract][Full Text] [Related]
11. How the cation 1-butyl-3-methylimidazolium impacts the interaction between the entrapped water and the reverse micelle interface created with an ionic liquid-like surfactant. Lépori CM; Correa NM; Silber JJ; Falcone RD Soft Matter; 2016 Jan; 12(3):830-44. PubMed ID: 26542472 [TBL] [Abstract][Full Text] [Related]
12. Effect of Surfactant Concentration and Hydrophobicity on the Ordering of Water at a Silica Surface. Shi L; McMillan JR; Yu D; Chen X; Tucker CJ; Wasserman E; Mohler C; Chen Z Langmuir; 2021 Sep; 37(36):10806-10817. PubMed ID: 34455791 [TBL] [Abstract][Full Text] [Related]
13. Ultrafast dynamics of water in cationic micelles. Dokter AM; Woutersen S; Bakker HJ J Chem Phys; 2007 Mar; 126(12):124507. PubMed ID: 17411144 [TBL] [Abstract][Full Text] [Related]
14. Laser-heating-induced displacement of surfactants on the water surface. Backus EH; Bonn D; Cantin S; Roke S; Bonn M J Phys Chem B; 2012 Mar; 116(9):2703-12. PubMed ID: 22324652 [TBL] [Abstract][Full Text] [Related]
15. Measuring properties of interfacial and bulk water regions in a reverse micelle with IR spectroscopy: a volumetric analysis of the inhomogeneously broadened OH band. Sechler TD; DelSole EM; Deák JC J Colloid Interface Sci; 2010 Jun; 346(2):391-7. PubMed ID: 20371070 [TBL] [Abstract][Full Text] [Related]
16. Water dynamics at neutral and ionic interfaces. Fenn EE; Wong DB; Fayer MD Proc Natl Acad Sci U S A; 2009 Sep; 106(36):15243-8. PubMed ID: 19706895 [TBL] [Abstract][Full Text] [Related]
17. Observation of the Bending Mode of Interfacial Water at Silica Surfaces by Near-Infrared Vibrational Sum-Frequency Generation Spectroscopy of the [Stretch + Bend] Combination Bands. Isaienko O; Nihonyanagi S; Sil D; Borguet E J Phys Chem Lett; 2013 Feb; 4(3):531-5. PubMed ID: 26281750 [TBL] [Abstract][Full Text] [Related]
18. Micropolarity and Hydrogen-Bond Donor Ability of Environmentally Friendly Anionic Reverse Micelles Explored by UV/Vis Absorption of a Molecular Probe and FTIR Spectroscopy. Girardi VR; Silber JJ; Falcone RD; Correa NM Chemphyschem; 2018 Mar; 19(6):759-765. PubMed ID: 29418056 [TBL] [Abstract][Full Text] [Related]
19. Ice-like water supports hydration forces and eases sliding friction. Dhopatkar N; Defante AP; Dhinojwala A Sci Adv; 2016 Aug; 2(8):e1600763. PubMed ID: 27574706 [TBL] [Abstract][Full Text] [Related]
20. On the Assignment of the Vibrational Spectrum of the Water Bend at the Air/Water Interface. Dutta C; Benderskii AV J Phys Chem Lett; 2017 Feb; 8(4):801-804. PubMed ID: 28067525 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]