These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 28682144)

  • 1. Structural modeling of human cardiac sodium channel pore domain.
    Ji X; Xiao Y; Liu S
    J Biomol Struct Dyn; 2018 Jul; 36(9):2268-2278. PubMed ID: 28682144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural basis for antiarrhythmic drug interactions with the human cardiac sodium channel.
    Nguyen PT; DeMarco KR; Vorobyov I; Clancy CE; Yarov-Yarovoy V
    Proc Natl Acad Sci U S A; 2019 Feb; 116(8):2945-2954. PubMed ID: 30728299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bisphenol A binds to the local anesthetic receptor site to block the human cardiac sodium channel.
    O'Reilly AO; Eberhardt E; Weidner C; Alzheimer C; Wallace BA; Lampert A
    PLoS One; 2012; 7(7):e41667. PubMed ID: 22848561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling the human Na
    Ahmed M; Jalily Hasani H; Ganesan A; Houghton M; Barakat K
    Drug Des Devel Ther; 2017; 11():2301-2324. PubMed ID: 28831242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular basis of the inhibition of the fast inactivation of voltage-gated sodium channel Nav1.5 by tarantula toxin Jingzhaotoxin-II.
    Huang Y; Zhou X; Tang C; Zhang Y; Tao H; Chen P; Liu Z
    Peptides; 2015 Jun; 68():175-82. PubMed ID: 25817910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functionalized Fullerene Targeting Human Voltage-Gated Sodium Channel, hNa
    Hilder TA; Robinson A; Chung SH
    ACS Chem Neurosci; 2017 Aug; 8(8):1747-1755. PubMed ID: 28586206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mapping the interaction site for the tarantula toxin hainantoxin-IV (β-TRTX-Hn2a) in the voltage sensor module of domain II of voltage-gated sodium channels.
    Cai T; Luo J; Meng E; Ding J; Liang S; Wang S; Liu Z
    Peptides; 2015 Jun; 68():148-56. PubMed ID: 25218973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Important Role of Asparagines in Coupling the Pore and Votage-Sensor Domain in Voltage-Gated Sodium Channels.
    Sheets MF; Fozzard HA; Hanck DA
    Biophys J; 2015 Dec; 109(11):2277-86. PubMed ID: 26636939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modelling of an autonomous Nav1.5 channel system as a part of in silico pharmacology study.
    Rayevsky A; Samofalova DO; Maximyuk O; Platonov M; Hurmach V; Ryabukhin S; Volochnyuk D
    J Mol Model; 2021 May; 27(6):182. PubMed ID: 34031769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling the pore structure of voltage-gated sodium channels in closed, open, and fast-inactivated conformation reveals details of site 1 toxin and local anesthetic binding.
    Scheib H; McLay I; Guex N; Clare JJ; Blaney FE; Dale TJ; Tate SN; Robertson GM
    J Mol Model; 2006 Sep; 12(6):813-22. PubMed ID: 16508760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Serine-401 as a batrachotoxin- and local anesthetic-sensing residue in the human cardiac Na+ channel.
    Wang SY; Tikhonov DB; Zhorov BS; Mitchell J; Wang GK
    Pflugers Arch; 2007 May; 454(2):277-87. PubMed ID: 17205354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Open-state structure and pore gating mechanism of the cardiac sodium channel.
    Jiang D; Banh R; Gamal El-Din TM; Tonggu L; Lenaeus MJ; Pomès R; Zheng N; Catterall WA
    Cell; 2021 Sep; 184(20):5151-5162.e11. PubMed ID: 34520724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The neural γ
    Ayan M; Essiz S
    J Mol Model; 2018 Jul; 24(8):206. PubMed ID: 30008086
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational Structural Pharmacology and Toxicology of Voltage-Gated Sodium Channels.
    Zhorov BS; Tikhonov DB
    Curr Top Membr; 2016; 78():117-44. PubMed ID: 27586283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural Insights into the Atomistic Mechanisms of Action of Small Molecule Inhibitors Targeting the KCa3.1 Channel Pore.
    Nguyen HM; Singh V; Pressly B; Jenkins DP; Wulff H; Yarov-Yarovoy V
    Mol Pharmacol; 2017 Apr; 91(4):392-402. PubMed ID: 28126850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure-based assessment of disease-related mutations in human voltage-gated sodium channels.
    Huang W; Liu M; Yan SF; Yan N
    Protein Cell; 2017 Jun; 8(6):401-438. PubMed ID: 28150151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biophysical and Pharmacological Characterization of Nav1.9 Voltage Dependent Sodium Channels Stably Expressed in HEK-293 Cells.
    Lin Z; Santos S; Padilla K; Printzenhoff D; Castle NA
    PLoS One; 2016; 11(8):e0161450. PubMed ID: 27556810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling of open, closed, and open-inactivated states of the hERG1 channel: structural mechanisms of the state-dependent drug binding.
    Durdagi S; Deshpande S; Duff HJ; Noskov SY
    J Chem Inf Model; 2012 Oct; 52(10):2760-74. PubMed ID: 22989185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting novel disease mutations in the cardiac sodium channel.
    Tarnovskaya SI; Korkosh VS; Zhorov BS; Frishman D
    Biochem Biophys Res Commun; 2020 Jan; 521(3):603-611. PubMed ID: 31677787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Architecture and pore block of eukaryotic voltage-gated sodium channels in view of NavAb bacterial sodium channel structure.
    Tikhonov DB; Zhorov BS
    Mol Pharmacol; 2012 Jul; 82(1):97-104. PubMed ID: 22505150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.