These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 28682260)

  • 1. Is Implicit Motor Imagery a Reliable Strategy for a Brain-Computer Interface?
    Osuagwu BA; Zych M; Vuckovic A
    IEEE Trans Neural Syst Rehabil Eng; 2017 Dec; 25(12):2239-2248. PubMed ID: 28682260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Similarities between explicit and implicit motor imagery in mental rotation of hands: an EEG study.
    Osuagwu BA; Vuckovic A
    Neuropsychologia; 2014 Dec; 65():197-210. PubMed ID: 25446966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unimanual Versus Bimanual Motor Imagery Classifiers for Assistive and Rehabilitative Brain Computer Interfaces.
    Vuckovic A; Pangaro S; Finda P
    IEEE Trans Neural Syst Rehabil Eng; 2018 Dec; 26(12):2407-2415. PubMed ID: 30371375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A brain-computer interface driven by imagining different force loads on a single hand: an online feasibility study.
    Wang K; Wang Z; Guo Y; He F; Qi H; Xu M; Ming D
    J Neuroeng Rehabil; 2017 Sep; 14(1):93. PubMed ID: 28893295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EEG-based classification of imaginary left and right foot movements using beta rebound.
    Hashimoto Y; Ushiba J
    Clin Neurophysiol; 2013 Nov; 124(11):2153-60. PubMed ID: 23757379
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Individually adapted imagery improves brain-computer interface performance in end-users with disability.
    Scherer R; Faller J; Friedrich EV; Opisso E; Costa U; Kübler A; Müller-Putz GR
    PLoS One; 2015; 10(5):e0123727. PubMed ID: 25992718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Covert Verb Reading Contributes to Signal Classification of Motor Imagery in BCI.
    Zhang H; Sun Y; Li J; Wang F; Wang Z
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jan; 26(1):45-50. PubMed ID: 28981418
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Whatever works: a systematic user-centered training protocol to optimize brain-computer interfacing individually.
    Friedrich EV; Neuper C; Scherer R
    PLoS One; 2013; 8(9):e76214. PubMed ID: 24086710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EEG oscillatory patterns and classification of sequential compound limb motor imagery.
    Yi W; Qiu S; Wang K; Qi H; He F; Zhou P; Zhang L; Ming D
    J Neuroeng Rehabil; 2016 Jan; 13():11. PubMed ID: 26822435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential influence of habitual third-person vision of a body part on mental rotation of images of hands and feet.
    Edwards LM; Causby RS; Stewart H; Stanton TR
    Exp Brain Res; 2019 May; 237(5):1325-1337. PubMed ID: 30874859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Motor Imagery Hand Movement Direction Decoding Using Brain Computer Interface to Aid Stroke Recovery and Rehabilitation.
    Benzy VK; Vinod AP; Subasree R; Alladi S; Raghavendra K
    IEEE Trans Neural Syst Rehabil Eng; 2020 Dec; 28(12):3051-3062. PubMed ID: 33211662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Effects of Bilateral Phase-Dependent Closed-Loop Vibration Stimulation With Motor Imagery Paradigm.
    Zhang W; Song A; Zeng H; Xu B; Miao M
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2732-2742. PubMed ID: 36129854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcranial magnetic stimulation for individual identification of the best electrode position for a motor imagery-based brain-computer interface.
    Hänselmann S; Schneiders M; Weidner N; Rupp R
    J Neuroeng Rehabil; 2015 Aug; 12():71. PubMed ID: 26303933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using a motor imagery questionnaire to estimate the performance of a Brain-Computer Interface based on object oriented motor imagery.
    Vuckovic A; Osuagwu BA
    Clin Neurophysiol; 2013 Aug; 124(8):1586-95. PubMed ID: 23535455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing motor imagery in brain-computer interface training: Psychological and neurophysiological correlates.
    Vasilyev A; Liburkina S; Yakovlev L; Perepelkina O; Kaplan A
    Neuropsychologia; 2017 Mar; 97():56-65. PubMed ID: 28167121
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating the effects of visual distractors on the performance of a motor imagery brain-computer interface.
    Emami Z; Chau T
    Clin Neurophysiol; 2018 Jun; 129(6):1268-1275. PubMed ID: 29677690
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brain oscillatory signatures of motor tasks.
    Ramos-Murguialday A; Birbaumer N
    J Neurophysiol; 2015 Jun; 113(10):3663-82. PubMed ID: 25810484
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence of Variabilities in EEG Dynamics During Motor Imagery-Based Multiclass Brain-Computer Interface.
    Saha S; Ahmed KIU; Mostafa R; Hadjileontiadis L; Khandoker A
    IEEE Trans Neural Syst Rehabil Eng; 2018 Feb; 26(2):371-382. PubMed ID: 29432108
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A hybrid BCI based on EEG and fNIRS signals improves the performance of decoding motor imagery of both force and speed of hand clenching.
    Yin X; Xu B; Jiang C; Fu Y; Wang Z; Li H; Shi G
    J Neural Eng; 2015 Jun; 12(3):036004. PubMed ID: 25834118
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Motor Imagery-Based Brain-Computer Interface Coupled to a Robotic Hand Orthosis Aimed for Neurorehabilitation of Stroke Patients.
    Cantillo-Negrete J; Carino-Escobar RI; Carrillo-Mora P; Elias-Vinas D; Gutierrez-Martinez J
    J Healthc Eng; 2018; 2018():1624637. PubMed ID: 29849992
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.