These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 28682268)

  • 1. Assessment of Homomorphic Analysis for Human Activity Recognition From Acceleration Signals.
    Vanrell SR; Milone DH; Rufiner HL; Vanrell SR; Milone DH; Rufiner HL
    IEEE J Biomed Health Inform; 2018 Jul; 22(4):1001-1010. PubMed ID: 28682268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep Convolutional and LSTM Recurrent Neural Networks for Multimodal Wearable Activity Recognition.
    Ordóñez FJ; Roggen D
    Sensors (Basel); 2016 Jan; 16(1):. PubMed ID: 26797612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physical Activities Monitoring Using Wearable Acceleration Sensors Attached to the Body.
    Arif M; Kattan A
    PLoS One; 2015; 10(7):e0130851. PubMed ID: 26203909
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A triaxial accelerometer-based physical-activity recognition via augmented-signal features and a hierarchical recognizer.
    Khan AM; Lee YK; Lee SY; Kim TS
    IEEE Trans Inf Technol Biomed; 2010 Sep; 14(5):1166-72. PubMed ID: 20529753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of accelerometer based multi-sensor versus single-sensor activity recognition systems.
    Gao L; Bourke AK; Nelson J
    Med Eng Phys; 2014 Jun; 36(6):779-85. PubMed ID: 24636448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physical Human Activity Recognition Using Wearable Sensors.
    Attal F; Mohammed S; Dedabrishvili M; Chamroukhi F; Oukhellou L; Amirat Y
    Sensors (Basel); 2015 Dec; 15(12):31314-38. PubMed ID: 26690450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physical Activity Recognition Using Posterior-Adapted Class-Based Fusion of Multiaccelerometer Data.
    Chowdhury AK; Tjondronegoro D; Chandran V; Trost SG
    IEEE J Biomed Health Inform; 2018 May; 22(3):678-685. PubMed ID: 28534801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Watch-Dog: Detecting Self-Harming Activities From Wrist Worn Accelerometers.
    Bharti P; Panwar A; Gopalakrishna G; Chellappan S
    IEEE J Biomed Health Inform; 2018 May; 22(3):686-696. PubMed ID: 28410113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human Activity Recognition by Combining a Small Number of Classifiers.
    Nazabal A; Garcia-Moreno P; Artes-Rodriguez A; Ghahramani Z
    IEEE J Biomed Health Inform; 2016 Sep; 20(5):1342-51. PubMed ID: 26208368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extracting Fundamental Periods to Segment Biomedical Signals.
    Motrenko A; Strijov V
    IEEE J Biomed Health Inform; 2016 Nov; 20(6):1466-1476. PubMed ID: 26277011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The application of EMD in activity recognition based on a single triaxial accelerometer.
    Liao M; Guo Y; Qin Y; Wang Y
    Biomed Mater Eng; 2015; 26 Suppl 1():S1533-9. PubMed ID: 26405917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Classification of physical activities based on body-segments coordination.
    Fradet L; Marin F
    Comput Biol Med; 2016 Sep; 76():134-42. PubMed ID: 27441831
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly accurate recognition of human postures and activities through classification with rejection.
    Tang W; Sazonov ES
    IEEE J Biomed Health Inform; 2014 Jan; 18(1):309-15. PubMed ID: 24403429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physical Activity Classification for Elderly People in Free-Living Conditions.
    Awais M; Chiari L; Ihlen EAF; Helbostad JL; Palmerini L
    IEEE J Biomed Health Inform; 2019 Jan; 23(1):197-207. PubMed ID: 29994291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectral analysis of accelerometry signals from a directed-routine for falls-risk estimation.
    Liu Y; Redmond SJ; Wang N; Blumenkron F; Narayanan MR; Lovell NH
    IEEE Trans Biomed Eng; 2011 Aug; 58(8):. PubMed ID: 21550876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pre-Processing Effect on the Accuracy of Event-Based Activity Segmentation and Classification through Inertial Sensors.
    Fida B; Bernabucci I; Bibbo D; Conforto S; Schmid M
    Sensors (Basel); 2015 Sep; 15(9):23095-109. PubMed ID: 26378544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A wearable sensor module with a neural-network-based activity classification algorithm for daily energy expenditure estimation.
    Lin CW; Yang YT; Wang JS; Yang YC
    IEEE Trans Inf Technol Biomed; 2012 Sep; 16(5):991-8. PubMed ID: 22875251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. User-Independent Recognition of Sports Activities From a Single Wrist-Worn Accelerometer: A Template-Matching-Based Approach.
    Margarito J; Helaoui R; Bianchi AM; Sartor F; Bonomi AG
    IEEE Trans Biomed Eng; 2016 Apr; 63(4):788-96. PubMed ID: 26302509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Significant Features for Human Activity Recognition Using Tri-Axial Accelerometers.
    Bennasar M; Price BA; Gooch D; Bandara AK; Nuseibeh B
    Sensors (Basel); 2022 Oct; 22(19):. PubMed ID: 36236586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TSE-CNN: A Two-Stage End-to-End CNN for Human Activity Recognition.
    Huang J; Lin S; Wang N; Dai G; Xie Y; Zhou J
    IEEE J Biomed Health Inform; 2020 Jan; 24(1):292-299. PubMed ID: 30969934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.