These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 28682387)

  • 1. iMulti-HumPhos: a multi-label classifier for identifying human phosphorylated proteins using multiple kernel learning based support vector machines.
    Hasan MAM; Ahmad S; Molla MKI
    Mol Biosyst; 2017 Jul; 13(8):1608-1618. PubMed ID: 28682387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-iPPseEvo: A Multi-label Classifier for Identifying Human Phosphorylated Proteins by Incorporating Evolutionary Information into Chou's General PseAAC via Grey System Theory.
    Qiu WR; Zheng QS; Sun BQ; Xiao X
    Mol Inform; 2017 Mar; 36(3):. PubMed ID: 27681207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. predCar-site: Carbonylation sites prediction in proteins using support vector machine with resolving data imbalanced issue.
    Hasan MA; Li J; Ahmad S; Molla MK
    Anal Biochem; 2017 May; 525():107-113. PubMed ID: 28286168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein subcellular localization prediction using multiple kernel learning based support vector machine.
    Hasan MA; Ahmad S; Molla MK
    Mol Biosyst; 2017 Mar; 13(4):785-795. PubMed ID: 28247893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. pLoc_bal-mVirus: Predict Subcellular Localization of Multi-Label Virus Proteins by Chou's General PseAAC and IHTS Treatment to Balance Training Dataset.
    Xiao X; Cheng X; Chen G; Mao Q; Chou KC
    Med Chem; 2019; 15(5):496-509. PubMed ID: 30556503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. iPhos-PseEn: identifying phosphorylation sites in proteins by fusing different pseudo components into an ensemble classifier.
    Qiu WR; Xiao X; Xu ZC; Chou KC
    Oncotarget; 2016 Aug; 7(32):51270-51283. PubMed ID: 27323404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of posttranslational modification sites from amino acid sequences with kernel methods.
    Xu Y; Wang X; Wang Y; Tian Y; Shao X; Wu LY; Deng N
    J Theor Biol; 2014 Mar; 344():78-87. PubMed ID: 24291233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. pLoc_bal-mEuk: Predict Subcellular Localization of Eukaryotic Proteins by General PseAAC and Quasi-balancing Training Dataset.
    Chou KC; Cheng X; Xiao X
    Med Chem; 2019; 15(5):472-485. PubMed ID: 30569871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. KinasePhos 2.0: a web server for identifying protein kinase-specific phosphorylation sites based on sequences and coupling patterns.
    Wong YH; Lee TY; Liang HK; Huang CM; Wang TY; Yang YH; Chu CH; Huang HD; Ko MT; Hwang JK
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W588-94. PubMed ID: 17517770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. mGOASVM: Multi-label protein subcellular localization based on gene ontology and support vector machines.
    Wan S; Mak MW; Kung SY
    BMC Bioinformatics; 2012 Nov; 13():290. PubMed ID: 23130999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of phosphorylation sites based on Krawtchouk image moments.
    Wang X; Xu ML; Li BQ; Zhai HL; Liu JJ; Li SY
    Proteins; 2017 Dec; 85(12):2231-2238. PubMed ID: 28921635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of serine and threonine phosphorylation sites in beta-elimination/ethanethiol addition-modified proteins by electrospray tandem mass spectrometry and database searching.
    Jaffe H; Veeranna ; Pant HC
    Biochemistry; 1998 Nov; 37(46):16211-24. PubMed ID: 9819213
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational Identification of Protein Pupylation Sites by Using Profile-Based Composition of k-Spaced Amino Acid Pairs.
    Hasan MM; Zhou Y; Lu X; Li J; Song J; Zhang Z
    PLoS One; 2015; 10(6):e0129635. PubMed ID: 26080082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DeepPPSite: A deep learning-based model for analysis and prediction of phosphorylation sites using efficient sequence information.
    Ahmed S; Kabir M; Arif M; Khan ZU; Yu DJ
    Anal Biochem; 2021 Jan; 612():113955. PubMed ID: 32949607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. iPhos-PseEvo: Identifying Human Phosphorylated Proteins by Incorporating Evolutionary Information into General PseAAC via Grey System Theory.
    Qiu WR; Sun BQ; Xiao X; Xu D; Chou KC
    Mol Inform; 2017 May; 36(5-6):. PubMed ID: 28488814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel sequence-based method for phosphorylation site prediction with feature selection and analysis.
    He ZS; Shi XH; Kong XY; Zhu YB; Chou KC
    Protein Pept Lett; 2012 Jan; 19(1):70-8. PubMed ID: 21919857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A multi-label learning based kernel automatic recommendation method for support vector machine.
    Zhang X; Song Q
    PLoS One; 2015; 10(3):e0120455. PubMed ID: 25893896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. iLoc-Animal: a multi-label learning classifier for predicting subcellular localization of animal proteins.
    Lin WZ; Fang JA; Xiao X; Chou KC
    Mol Biosyst; 2013 Apr; 9(4):634-44. PubMed ID: 23370050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PCVMZM: Using the Probabilistic Classification Vector Machines Model Combined with a Zernike Moments Descriptor to Predict Protein-Protein Interactions from Protein Sequences.
    Wang Y; You Z; Li X; Chen X; Jiang T; Zhang J
    Int J Mol Sci; 2017 May; 18(5):. PubMed ID: 28492483
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel network-based computational method to predict protein phosphorylation on tyrosine sites.
    Wang B; Wang M; Jiang Y; Sun D; Xu X
    J Bioinform Comput Biol; 2015 Dec; 13(6):1542005. PubMed ID: 26781824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.