These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 28683231)

  • 1. Sound-Intensity Feedback During Running Reduces Loading Rates and Impact Peak.
    Tate JJ; Milner CE
    J Orthop Sports Phys Ther; 2017 Aug; 47(8):565-569. PubMed ID: 28683231
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gait retraining to reduce lower extremity loading in runners.
    Crowell HP; Davis IS
    Clin Biomech (Bristol, Avon); 2011 Jan; 26(1):78-83. PubMed ID: 20888675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reducing Impact Loading in Runners: A One-Year Follow-up.
    Bowser BJ; Fellin R; Milner CE; Pohl MB; Davis IS
    Med Sci Sports Exerc; 2018 Dec; 50(12):2500-2506. PubMed ID: 29975300
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reducing impact loading during running with the use of real-time visual feedback.
    Crowell HP; Milner CE; Hamill J; Davis IS
    J Orthop Sports Phys Ther; 2010 Apr; 40(4):206-13. PubMed ID: 20357417
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In-field gait retraining and mobile monitoring to address running biomechanics associated with tibial stress fracture.
    Willy RW; Buchenic L; Rogacki K; Ackerman J; Schmidt A; Willson JD
    Scand J Med Sci Sports; 2016 Feb; 26(2):197-205. PubMed ID: 25652871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Patellofemoral Joint and Achilles Tendon Loads During Overground and Treadmill Running.
    Willy RW; Halsey L; Hayek A; Johnson H; Willson JD
    J Orthop Sports Phys Ther; 2016 Aug; 46(8):664-72. PubMed ID: 27170525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of negative joint work and vertical ground reaction force loading rates in Chi runners and rearfoot-striking runners.
    Goss DL; Gross MT
    J Orthop Sports Phys Ther; 2013 Oct; 43(10):685-92. PubMed ID: 24256170
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Altered Vertical Ground Reaction Forces in Participants With Chronic Ankle Instability While Running.
    Bigouette J; Simon J; Liu K; Docherty CL
    J Athl Train; 2016 Sep; 51(9):682-687. PubMed ID: 27813684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of tibial shock feedback training on impact loading and running economy.
    Clansey AC; Hanlon M; Wallace ES; Nevill A; Lake MJ
    Med Sci Sports Exerc; 2014; 46(5):973-81. PubMed ID: 24121245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact Loading During Distracted Running Before and After Auditory Gait Retraining.
    Ching E; An WW; Au IPH; Zhang JH; Chan ZYS; Shum G; Cheung RTH
    Int J Sports Med; 2018 Dec; 39(14):1075-1080. PubMed ID: 30419576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Primary and secondary effects of real-time feedback to reduce vertical loading rate during running.
    Baggaley M; Willy RW; Meardon SA
    Scand J Med Sci Sports; 2017 May; 27(5):501-507. PubMed ID: 26992659
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gait Retraining Improves Running Impact Loading and Function in Previously Injured U.S. Military Cadets: A Pilot Study.
    Miller EM; Crowell MS; Morris JB; Mason JS; Zifchock R; Goss DL
    Mil Med; 2021 Nov; 186(11-12):e1077-e1087. PubMed ID: 33215669
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Running quietly reduces ground reaction force and vertical loading rate and alters foot strike technique.
    Phan X; Grisbrook TL; Wernli K; Stearne SM; Davey P; Ng L
    J Sports Sci; 2017 Aug; 35(16):1636-1642. PubMed ID: 27594087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of impact loading during distracted running before and after gait retraining in runners.
    Cheung RTH; An WW; Au IPH; Zhang JH; Chan ZYS; MacPhail AJ
    J Sports Sci; 2018 Jul; 36(13):1497-1501. PubMed ID: 29099654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Step frequency and lower extremity loading during running.
    Hobara H; Sato T; Sakaguchi M; Sato T; Nakazawa K
    Int J Sports Med; 2012 Apr; 33(4):310-3. PubMed ID: 22383130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rearfoot and midfoot or forefoot impacts in habitually shod runners.
    Boyer ER; Rooney BD; Derrick TR
    Med Sci Sports Exerc; 2014 Jul; 46(7):1384-91. PubMed ID: 24300124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-Time Biofeedback of Performance to Reduce Braking Forces Associated With Running-Related Injury: An Exploratory Study.
    Napier C; MacLean CL; Maurer J; Taunton JE; Hunt MA
    J Orthop Sports Phys Ther; 2019 Mar; 49(3):136-144. PubMed ID: 30526232
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of real-time gait retraining on hip kinematics, pain and function in subjects with patellofemoral pain syndrome.
    Noehren B; Scholz J; Davis I
    Br J Sports Med; 2011 Jul; 45(9):691-6. PubMed ID: 20584755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gait Retraining for the Reduction of Injury Occurrence in Novice Distance Runners: 1-Year Follow-up of a Randomized Controlled Trial.
    Chan ZYS; Zhang JH; Au IPH; An WW; Shum GLK; Ng GYF; Cheung RTH
    Am J Sports Med; 2018 Feb; 46(2):388-395. PubMed ID: 29065279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic asymmetry in female runners with and without retrospective tibial stress fractures.
    Zifchock RA; Davis I; Hamill J
    J Biomech; 2006; 39(15):2792-7. PubMed ID: 16289516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.