BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 28683337)

  • 1. Decoupling the effects of stiffness and fiber density on cellular behaviors via an interpenetrating network of gelatin-methacrylate and collagen.
    Berger AJ; Linsmeier KM; Kreeger PK; Masters KS
    Biomaterials; 2017 Oct; 141():125-135. PubMed ID: 28683337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical confinement via a PEG/Collagen interpenetrating network inhibits behavior characteristic of malignant cells in the triple negative breast cancer cell line MDA.MB.231.
    Reynolds DS; Bougher KM; Letendre JH; Fitzgerald SF; Gisladottir UO; Grinstaff MW; Zaman MH
    Acta Biomater; 2018 Sep; 77():85-95. PubMed ID: 30030173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interpenetrating network gelatin methacryloyl (GelMA) and pectin-g-PCL hydrogels with tunable properties for tissue engineering.
    Fares MM; Shirzaei Sani E; Portillo Lara R; Oliveira RB; Khademhosseini A; Annabi N
    Biomater Sci; 2018 Oct; 6(11):2938-2950. PubMed ID: 30246835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Construction of a Decellularized Multicomponent Extracellular Matrix Interpenetrating Network Scaffold by Gelatin Microporous Hydrogel 3D Cell Culture System.
    Shi J; Yao H; Wang B; Yang J; Liu D; Shang X; Chong H; Fei W; Wang DA
    Macromol Rapid Commun; 2024 Mar; 45(5):e2300508. PubMed ID: 38049086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biofabrication of three-dimensional cellular structures based on gelatin methacrylate-alginate interpenetrating network hydrogel.
    Krishnamoorthy S; Zhang Z; Xu C
    J Biomater Appl; 2019 Mar; 33(8):1105-1117. PubMed ID: 30636494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On Low-Concentration Inks Formulated by Nanocellulose Assisted with Gelatin Methacrylate (GelMA) for 3D Printing toward Wound Healing Application.
    Xu W; Molino BZ; Cheng F; Molino PJ; Yue Z; Su D; Wang X; Willför S; Xu C; Wallace GG
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):8838-8848. PubMed ID: 30741518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell-laden microengineered gelatin methacrylate hydrogels.
    Nichol JW; Koshy ST; Bae H; Hwang CM; Yamanlar S; Khademhosseini A
    Biomaterials; 2010 Jul; 31(21):5536-44. PubMed ID: 20417964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-aspect-ratio water-dispersed gold nanowires incorporated within gelatin methacrylate hydrogels for constructing cardiac tissues in vitro.
    Li XP; Qu KY; Zhang F; Jiang HN; Zhang N; Nihad C; Liu CM; Wu KH; Wang XW; Huang NP
    J Mater Chem B; 2020 Aug; 8(32):7213-7224. PubMed ID: 32638823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogel based on interpenetrating polymer networks of dextran and gelatin for vascular tissue engineering.
    Liu Y; Chan-Park MB
    Biomaterials; 2009 Jan; 30(2):196-207. PubMed ID: 18922573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Macroporous interpenetrating network of polyethylene glycol (PEG) and gelatin for cartilage regeneration.
    Zhang J; Wang J; Zhang H; Lin J; Ge Z; Zou X
    Biomed Mater; 2016 Jun; 11(3):035014. PubMed ID: 27305040
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular interactions and forces of adhesion between single human neural stem cells and gelatin methacrylate hydrogels of varying stiffness.
    Puckert C; Tomaskovic-Crook E; Gambhir S; Wallace GG; Crook JM; Higgins MJ
    Acta Biomater; 2020 Apr; 106():156-169. PubMed ID: 32084598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gelatin Methacrylate (GelMA)-Based Hydrogels for Cell Transplantation: an Effective Strategy for Tissue Engineering.
    Xiao S; Zhao T; Wang J; Wang C; Du J; Ying L; Lin J; Zhang C; Hu W; Wang L; Xu K
    Stem Cell Rev Rep; 2019 Oct; 15(5):664-679. PubMed ID: 31154619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unveiling the versatility of gelatin methacryloyl hydrogels: a comprehensive journey into biomedical applications.
    Pramanik S; Alhomrani M; Alamri AS; Alsanie WF; Nainwal P; Kimothi V; Deepak A; Sargsyan AS
    Biomed Mater; 2024 Jun; 19(4):. PubMed ID: 38768611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gelatin methacrylate scaffold for bone tissue engineering: The influence of polymer concentration.
    Celikkin N; Mastrogiacomo S; Jaroszewicz J; Walboomers XF; Swieszkowski W
    J Biomed Mater Res A; 2018 Jan; 106(1):201-209. PubMed ID: 28884519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell-laden interpenetrating network hydrogels formed from methacrylated gelatin and silk fibroin via a combination of sonication and photocrosslinking approaches.
    Xiao W; Li J; Qu X; Wang L; Tan Y; Li K; Li H; Yue X; Li B; Liao X
    Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():57-67. PubMed ID: 30889731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering three-dimensional macroporous hydroxyethyl methacrylate-alginate-gelatin cryogel for growth and proliferation of lung epithelial cells.
    Singh D; Zo SM; Kumar A; Han SS
    J Biomater Sci Polym Ed; 2013; 24(11):1343-59. PubMed ID: 23796035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulating polymer chemistry to enhance non-viral gene delivery inside hydrogels with tunable matrix stiffness.
    Keeney M; Onyiah S; Zhang Z; Tong X; Han LH; Yang F
    Biomaterials; 2013 Dec; 34(37):9657-65. PubMed ID: 24011715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photopatterned collagen-hyaluronic acid interpenetrating polymer network hydrogels.
    Suri S; Schmidt CE
    Acta Biomater; 2009 Sep; 5(7):2385-97. PubMed ID: 19446050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Directed endothelial cell morphogenesis in micropatterned gelatin methacrylate hydrogels.
    Nikkhah M; Eshak N; Zorlutuna P; Annabi N; Castello M; Kim K; Dolatshahi-Pirouz A; Edalat F; Bae H; Yang Y; Khademhosseini A
    Biomaterials; 2012 Dec; 33(35):9009-18. PubMed ID: 23018132
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hybrid Methacrylated Gelatin and Hyaluronic Acid Hydrogel Scaffolds. Preparation and Systematic Characterization for Prospective Tissue Engineering Applications.
    Velasco-Rodriguez B; Diaz-Vidal T; Rosales-Rivera LC; García-González CA; Alvarez-Lorenzo C; Al-Modlej A; Domínguez-Arca V; Prieto G; Barbosa S; Soltero Martínez JFA; Taboada P
    Int J Mol Sci; 2021 Jun; 22(13):. PubMed ID: 34201769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.