BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 28683420)

  • 1. Shoulder assessment according to the international classification of functioning by means of inertial sensor technologies: A systematic review.
    De Baets L; van der Straaten R; Matheve T; Timmermans A
    Gait Posture; 2017 Sep; 57():278-294. PubMed ID: 28683420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conversion of Upper-Limb Inertial Measurement Unit Data to Joint Angles: A Systematic Review.
    Fang Z; Woodford S; Senanayake D; Ackland D
    Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mobile assessment of the lower limb kinematics in healthy persons and in persons with degenerative knee disorders: A systematic review.
    van der Straaten R; De Baets L; Jonkers I; Timmermans A
    Gait Posture; 2018 Jan; 59():229-241. PubMed ID: 29096266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Errors in Shoulder Joint Position Sense Mainly Come from the Glenohumeral Joint.
    Lin YL; Karduna A
    J Appl Biomech; 2017 Feb; 33(1):32-38. PubMed ID: 27705061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reliability of Performance-Based Clinical Measurements to Assess Shoulder Girdle Kinematics and Positioning: Systematic Review.
    D'hondt NE; Kiers H; Pool JJM; Hacquebord ST; Terwee CB; Veeger DHEJ
    Phys Ther; 2017 Jan; 97(1):124-144. PubMed ID: 27587801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactive wearable systems for upper body rehabilitation: a systematic review.
    Wang Q; Markopoulos P; Yu B; Chen W; Timmermans A
    J Neuroeng Rehabil; 2017 Mar; 14(1):20. PubMed ID: 28284228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validity and reliability of wearable inertial sensors in healthy adult walking: a systematic review and meta-analysis.
    Kobsar D; Charlton JM; Tse CTF; Esculier JF; Graffos A; Krowchuk NM; Thatcher D; Hunt MA
    J Neuroeng Rehabil; 2020 May; 17(1):62. PubMed ID: 32393301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scapulothoracic muscle activity and recruitment timing in patients with shoulder impingement symptoms and glenohumeral instability.
    Struyf F; Cagnie B; Cools A; Baert I; Brempt JV; Struyf P; Meeus M
    J Electromyogr Kinesiol; 2014 Apr; 24(2):277-84. PubMed ID: 24389333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The importance of inertial measurement unit placement in assessing upper limb motion.
    Höglund G; Grip H; Öhberg F
    Med Eng Phys; 2021 Jun; 92():1-9. PubMed ID: 34167702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The reliability of the ELEPAP clinical protocol for the 3D kinematic evaluation of upper limb function.
    Vanezis A; Robinson MA; Darras N
    Gait Posture; 2015 Feb; 41(2):431-9. PubMed ID: 25534948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The feasibility of shoulder motion tracking during activities of daily living using inertial measurement units.
    Kirking B; El-Gohary M; Kwon Y
    Gait Posture; 2016 Sep; 49():47-53. PubMed ID: 27371783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Age-related changes analyzing shoulder kinematics by means of inertial sensors.
    Roldán-Jiménez C; Cuesta-Vargas AI
    Clin Biomech (Bristol, Avon); 2016 Aug; 37():70-76. PubMed ID: 27362972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Upper limb assessment with inertial measurement units according to the international classification of functioning in stroke: a systematic review and correlation meta-analysis.
    Martino Cinnera A; Picerno P; Bisirri A; Koch G; Morone G; Vannozzi G
    Top Stroke Rehabil; 2024 Jan; 31(1):66-85. PubMed ID: 37083139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wearable inertial sensors provide reliable biomarkers of disease severity in multiple sclerosis: A systematic review and meta-analysis.
    Vienne-Jumeau A; Quijoux F; Vidal PP; Ricard D
    Ann Phys Rehabil Med; 2020 Mar; 63(2):138-147. PubMed ID: 31421274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ambulatory measurement of shoulder and elbow kinematics through inertial and magnetic sensors.
    Cutti AG; Giovanardi A; Rocchi L; Davalli A; Sacchetti R
    Med Biol Eng Comput; 2008 Feb; 46(2):169-78. PubMed ID: 18087742
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shoulder joint kinematics during elevation measured by ultrasound-based measuring system.
    Illyés A; Kiss RM
    J Electromyogr Kinesiol; 2007 Jun; 17(3):355-64. PubMed ID: 16624576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shoulder and elbow kinematics during the Mallet score in obstetrical brachial plexus palsy.
    Herisson O; Maurel N; Diop A; Le Chatelier M; Cambon-Binder A; Fitoussi F
    Clin Biomech (Bristol, Avon); 2017 Mar; 43():1-7. PubMed ID: 28161491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scapulothoracic and glenohumeral kinematics following an external rotation fatigue protocol.
    Ebaugh DD; McClure PW; Karduna AR
    J Orthop Sports Phys Ther; 2006 Aug; 36(8):557-71. PubMed ID: 16915977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acute effects of spinal bracing on scapular kinematics in adolescent idiopathic scoliosis.
    Gur G; Turgut E; Ayhan C; Baltaci G; Yakut Y
    Clin Biomech (Bristol, Avon); 2017 Aug; 47():14-19. PubMed ID: 28554052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inertial measurement systems for segments and joints kinematics assessment: towards an understanding of the variations in sensors accuracy.
    Lebel K; Boissy P; Nguyen H; Duval C
    Biomed Eng Online; 2017 May; 16(1):56. PubMed ID: 28506273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.