These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 28683535)

  • 1. In Silico Modeling of Indigo and Tyrian Purple Single-Electron Nano-Transistors Using Density Functional Theory Approach.
    Shityakov S; Roewer N; Förster C; Broscheit JA
    Nanoscale Res Lett; 2017 Dec; 12(1):439. PubMed ID: 28683535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. One-pot selective biosynthesis of Tyrian purple in Escherichia coli.
    Li F; Chen Q; Deng H; Ye S; Chen R; Keasling JD; Luo X
    Metab Eng; 2024 Jan; 81():100-109. PubMed ID: 38000548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Indigoid dyes by group E monooxygenases: mechanism and biocatalysis.
    Heine T; Großmann C; Hofmann S; Tischler D
    Biol Chem; 2019 Jun; 400(7):939-950. PubMed ID: 30844759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple periodicity in a nanoparticle-based single-electron transistor.
    Bitton O; Gutman DB; Berkovits R; Frydman A
    Nat Commun; 2017 Sep; 8(1):402. PubMed ID: 28864825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing NLO performance by utilizing tyrian purple dye as donor moiety in organic DSSCs with end capped acceptors: A theoretical study.
    Hassan AU; Sumrra SH; Mustafa G; Noreen S; Ali A; Sara S; Imran M
    J Mol Graph Model; 2023 Nov; 124():108538. PubMed ID: 37327646
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards a semiquantitative non invasive characterisation of Tyrian purple dye composition: Convergence of UV-Visible reflectance spectroscopy and fast-high temperature-high performance liquid chromatography with photodiode array detection.
    Clementi C; Nowik W; Romani A; Cardon D; Trojanowicz M; Davantès A; Chaminade P
    Anal Chim Acta; 2016 Jul; 926():17-27. PubMed ID: 27216389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of indigoid dyes in natural organic pigments used in historical art objects by high-performance liquid chromatography coupled to electrospray ionization mass spectrometry.
    Puchalska M; Połeć-Pawlak K; Zadrozna I; Hryszko H; Jarosz M
    J Mass Spectrom; 2004 Dec; 39(12):1441-9. PubMed ID: 15578636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bottom-Up Single-Electron Transistors.
    Makarenko KS; Liu Z; de Jong MP; Zwanenburg FA; Huskens J; van der Wiel WG
    Adv Mater; 2017 Nov; 29(42):. PubMed ID: 28922482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of Tyrian purple indigoid dye from tryptophan in Escherichia coli.
    Lee J; Kim J; Song JE; Song WS; Kim EJ; Kim YG; Jeong HJ; Kim HR; Choi KY; Kim BG
    Nat Chem Biol; 2021 Jan; 17(1):104-112. PubMed ID: 33139950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of an indole biodegradation gene cluster from
    Li F; Deng H; Zhong B; Ruan B; Zhao X; Luo X
    Front Bioeng Biotechnol; 2022; 10():1109929. PubMed ID: 36704308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A simple, safe and efficient synthesis of Tyrian purple (6,6'-dibromoindigo).
    Wolk JL; Frimer AA
    Molecules; 2010 Aug; 15(8):5561-80. PubMed ID: 20714313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tailored micro-extraction method for Raman/SERS detection of indigoids in ancient textiles.
    Platania E; Lofrumento C; Lottini E; Azzaro E; Ricci M; Becucci M
    Anal Bioanal Chem; 2015 Aug; 407(21):6505-14. PubMed ID: 26082395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-electron effects in non-overlapped multiple-gate silicon-on-insulator metal-oxide-semiconductor field-effect transistors.
    Lee W; Su P
    Nanotechnology; 2009 Feb; 20(6):065202. PubMed ID: 19417374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bromoperoxidase Producing
    Ngangbam AK; Mouatt P; Smith J; Waters DLE; Benkendorff K
    Mar Drugs; 2019 May; 17(5):. PubMed ID: 31058830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron Transport in Graphene Nanoribbon Field-Effect Transistor under Bias and Gate Voltages: Isochemical Potential Approach.
    Yun J; Lee G; Kim KS
    J Phys Chem Lett; 2016 Jul; 7(13):2478-82. PubMed ID: 27299184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gold Nanoparticles on Functionalized Silicon Substrate under Coulomb Blockade Regime: An Experimental and Theoretical Investigation.
    Pluchery O; Caillard L; Dollfus P; Chabal YJ
    J Phys Chem B; 2018 Jan; 122(2):897-903. PubMed ID: 29069545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Room temperature single electron transistor based on a size-selected aluminium cluster.
    Zharinov VS; Picot T; Scheerder JE; Janssens E; Van de Vondel J
    Nanoscale; 2020 Jan; 12(2):1164-1170. PubMed ID: 31850438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A tight-binding study of single-atom transistors.
    Ryu H; Lee S; Fuechsle M; Miwa JA; Mahapatra S; Hollenberg LC; Simmons MY; Klimeck G
    Small; 2015 Jan; 11(3):374-81. PubMed ID: 25293353
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variable-Barrier Quantum Coulomb Blockade Effect in Nanoscale Transistors.
    Yadav P; Chakraborty S; Moraru D; Samanta A
    Nanomaterials (Basel); 2022 Dec; 12(24):. PubMed ID: 36558290
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ideal discrete energy levels in synthesized Au nanoparticles for chemically assembled single-electron transistors.
    Kano S; Azuma Y; Maeda K; Tanaka D; Sakamoto M; Teranishi T; Smith LW; Smith CG; Majima Y
    ACS Nano; 2012 Nov; 6(11):9972-7. PubMed ID: 23083327
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.