BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 28683591)

  • 1. The Ketone Metabolite β-Hydroxybutyrate Attenuates Oxidative Stress in Spinal Cord Injury by Suppression of Class I Histone Deacetylases.
    Kong G; Huang Z; Ji W; Wang X; Liu J; Wu X; Huang Z; Li R; Zhu Q
    J Neurotrauma; 2017 Sep; 34(18):2645-2655. PubMed ID: 28683591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ketogenic Metabolism Inhibits Histone Deacetylase (HDAC) and Reduces Oxidative Stress After Spinal Cord Injury in Rats.
    Wang X; Wu X; Liu Q; Kong G; Zhou J; Jiang J; Wu X; Huang Z; Su W; Zhu Q
    Neuroscience; 2017 Dec; 366():36-43. PubMed ID: 29024787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suppression of oxidative stress by β-hydroxybutyrate, an endogenous histone deacetylase inhibitor.
    Shimazu T; Hirschey MD; Newman J; He W; Shirakawa K; Le Moan N; Grueter CA; Lim H; Saunders LR; Stevens RD; Newgard CB; Farese RV; de Cabo R; Ulrich S; Akassoglou K; Verdin E
    Science; 2013 Jan; 339(6116):211-4. PubMed ID: 23223453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ketone Metabolite β-Hydroxybutyrate Ameliorates Inflammation After Spinal Cord Injury by Inhibiting the NLRP3 Inflammasome.
    Kong G; Liu J; Li R; Lin J; Huang Z; Yang Z; Wu X; Huang Z; Zhu Q; Wu X
    Neurochem Res; 2021 Feb; 46(2):213-229. PubMed ID: 33108630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. β-Hydroxybutyrate elevation as a compensatory response against oxidative stress in cardiomyocytes.
    Nagao M; Toh R; Irino Y; Mori T; Nakajima H; Hara T; Honjo T; Satomi-Kobayashi S; Shinke T; Tanaka H; Ishida T; Hirata K
    Biochem Biophys Res Commun; 2016 Jul; 475(4):322-8. PubMed ID: 27216458
    [TBL] [Abstract][Full Text] [Related]  

  • 6. β-Hydroxybutyrate, a ketone body, reduces the cytotoxic effect of cisplatin via activation of HDAC5 in human renal cortical epithelial cells.
    Mikami D; Kobayashi M; Uwada J; Yazawa T; Kamiyama K; Nishimori K; Nishikawa Y; Morikawa Y; Yokoi S; Takahashi N; Kasuno K; Taniguchi T; Iwano M
    Life Sci; 2019 Apr; 222():125-132. PubMed ID: 30851335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of histone deacetylase reduces transcription of NADPH oxidases and ROS production and ameliorates pulmonary arterial hypertension.
    Chen F; Li X; Aquadro E; Haigh S; Zhou J; Stepp DW; Weintraub NL; Barman SA; Fulton DJR
    Free Radic Biol Med; 2016 Oct; 99():167-178. PubMed ID: 27498117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ketogenic diet attenuates oxidative stress and inflammation after spinal cord injury by activating Nrf2 and suppressing the NF-κB signaling pathways.
    Lu Y; Yang YY; Zhou MW; Liu N; Xing HY; Liu XX; Li F
    Neurosci Lett; 2018 Sep; 683():13-18. PubMed ID: 29894768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Curcumin ameliorated diabetic neuropathy partially by inhibition of NADPH oxidase mediating oxidative stress in the spinal cord.
    Zhao WC; Zhang B; Liao MJ; Zhang WX; He WY; Wang HB; Yang CX
    Neurosci Lett; 2014 Feb; 560():81-5. PubMed ID: 24370596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ryanodine Receptor 2 Plays a Critical Role in Spinal Cord Injury via Induction of Oxidative Stress.
    Liao B; Zhang Y; Sun H; Ma B; Qian J
    Cell Physiol Biochem; 2016; 38(3):1129-37. PubMed ID: 26963898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. β hydroxybutyrate levels in serum and cerebrospinal fluid under ketone body metabolism in rats.
    Wang X; Liu Q; Zhou J; Wu X; Zhu Q
    Exp Anim; 2017 May; 66(2):177-182. PubMed ID: 28100888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MiRNA-99a alleviates inflammation and oxidative stress in lipopolysaccharide-stimulated PC-12 cells and rats post spinal cord injury.
    Wang R; Liu Y; Jing L
    Bioengineered; 2022 Feb; 13(2):4248-4259. PubMed ID: 35135443
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advanced oxidation protein products induce microglia-mediated neuroinflammation via MAPKs-NF-κB signaling pathway and pyroptosis after secondary spinal cord injury.
    Liu Z; Yao X; Jiang W; Li W; Zhu S; Liao C; Zou L; Ding R; Chen J
    J Neuroinflammation; 2020 Mar; 17(1):90. PubMed ID: 32192500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of Oxidative Stress in Pulmonary Artery Endothelium. Modulation of Extracellular Superoxide Dismutase and NOX4 Expression Using Histone Deacetylase Class I Inhibitors.
    Zelko IN; Folz RJ
    Am J Respir Cell Mol Biol; 2015 Oct; 53(4):513-24. PubMed ID: 25749103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Age increases reactive oxygen species production in macrophages and potentiates oxidative damage after spinal cord injury.
    Zhang B; Bailey WM; McVicar AL; Gensel JC
    Neurobiol Aging; 2016 Nov; 47():157-167. PubMed ID: 27596335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. d-β-Hydroxybutyrate inhibited the apoptosis of PC12 cells induced by H2O2 via inhibiting oxidative stress.
    Cheng B; Lu H; Bai B; Chen J
    Neurochem Int; 2013 Apr; 62(5):620-5. PubMed ID: 23022628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential effects of NOX2 and NOX4 inhibition after rodent spinal cord injury.
    Khayrullina G; Bermudez S; Hopkins D; Yauger Y; Byrnes KR
    PLoS One; 2023; 18(3):e0281045. PubMed ID: 36897852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. β-Hydroxybutyrate in the Brain: One Molecule, Multiple Mechanisms.
    Achanta LB; Rae CD
    Neurochem Res; 2017 Jan; 42(1):35-49. PubMed ID: 27826689
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CaMKII exacerbates heart failure progression by activating class I HDACs.
    Zhang M; Yang X; Zimmerman RJ; Wang Q; Ross MA; Granger JM; Luczak ED; Bedja D; Jiang H; Feng N
    J Mol Cell Cardiol; 2020 Dec; 149():73-81. PubMed ID: 32971072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hypericum perforatum Attenuates Spinal Cord Injury-Induced Oxidative Stress and Apoptosis in the Dorsal Root Ganglion of Rats: Involvement of TRPM2 and TRPV1 Channels.
    Özdemir ÜS; Nazıroğlu M; Şenol N; Ghazizadeh V
    Mol Neurobiol; 2016 Aug; 53(6):3540-3551. PubMed ID: 26099309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.