These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 28683850)

  • 1. Suppression of SIRT2 and altered acetylation status of human pluripotent stem cells: possible link to metabolic switch during reprogramming.
    Kwon OS; Han MJ; Cha HJ
    BMB Rep; 2017 Sep; 50(9):435-436. PubMed ID: 28683850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic control of primed human pluripotent stem cell fate and function by the miR-200c-SIRT2 axis.
    Cha Y; Han MJ; Cha HJ; Zoldan J; Burkart A; Jung JH; Jang Y; Kim CH; Jeong HC; Kim BG; Langer R; Kahn CR; Guarente L; Kim KS
    Nat Cell Biol; 2017 May; 19(5):445-456. PubMed ID: 28436968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SIRT2 regulates mitochondrial dynamics and reprogramming via MEK1-ERK-DRP1 and AKT1-DRP1 axes.
    Cha Y; Kim T; Jeon J; Jang Y; Kim PB; Lopes C; Leblanc P; Cohen BM; Kim KS
    Cell Rep; 2021 Dec; 37(13):110155. PubMed ID: 34965411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SIRT2 is required for efficient reprogramming of mouse embryonic fibroblasts toward pluripotency.
    Kim AY; Lee EM; Lee EJ; Kim JH; Suk K; Lee E; Hur K; Hong YJ; Do JT; Park S; Jeong KS
    Cell Death Dis; 2018 Aug; 9(9):893. PubMed ID: 30166528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SIRT2 and glycolytic enzyme acetylation in pluripotent stem cells.
    Liu TM; Shyh-Chang N
    Nat Cell Biol; 2017 Apr; 19(5):412-414. PubMed ID: 28446816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. miR-290/371-Mbd2-Myc circuit regulates glycolytic metabolism to promote pluripotency.
    Cao Y; Guo WT; Tian S; He X; Wang XW; Liu X; Gu KL; Ma X; Huang D; Hu L; Cai Y; Zhang H; Wang Y; Gao P
    EMBO J; 2015 Mar; 34(5):609-23. PubMed ID: 25603933
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The functions of microRNAs in pluripotency and reprogramming.
    Leonardo TR; Schultheisz HL; Loring JF; Laurent LC
    Nat Cell Biol; 2012 Nov; 14(11):1114-21. PubMed ID: 23131918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interference with the mitochondrial bioenergetics fuels reprogramming to pluripotency via facilitation of the glycolytic transition.
    Son MJ; Jeong BR; Kwon Y; Cho YS
    Int J Biochem Cell Biol; 2013 Nov; 45(11):2512-8. PubMed ID: 23939289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noncoding RNAs in the Regulation of Pluripotency and Reprogramming.
    Sherstyuk VV; Medvedev SP; Zakian SM
    Stem Cell Rev Rep; 2018 Feb; 14(1):58-70. PubMed ID: 29143182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MicroRNAs and RNA binding protein regulators of microRNAs in the control of pluripotency and reprogramming.
    Hao J; Duan FF; Wang Y
    Curr Opin Genet Dev; 2017 Oct; 46():95-103. PubMed ID: 28753462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming.
    Folmes CD; Nelson TJ; Martinez-Fernandez A; Arrell DK; Lindor JZ; Dzeja PP; Ikeda Y; Perez-Terzic C; Terzic A
    Cell Metab; 2011 Aug; 14(2):264-71. PubMed ID: 21803296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic Reprogramming, Autophagy, and Reactive Oxygen Species Are Necessary for Primordial Germ Cell Reprogramming into Pluripotency.
    Sainz de la Maza D; Moratilla A; Aparicio V; Lorca C; Alcaina Y; Martín D; De Miguel MP
    Oxid Med Cell Longev; 2017; 2017():4745252. PubMed ID: 28757909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How microRNAs facilitate reprogramming to pluripotency.
    Anokye-Danso F; Snitow M; Morrisey EE
    J Cell Sci; 2012 Sep; 125(Pt 18):4179-87. PubMed ID: 23077173
    [TBL] [Abstract][Full Text] [Related]  

  • 14. IDO1 Maintains Pluripotency of Primed Human Embryonic Stem Cells by Promoting Glycolysis.
    Liu X; Wang M; Jiang T; He J; Fu X; Xu Y
    Stem Cells; 2019 Sep; 37(9):1158-1165. PubMed ID: 31145821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic regulation in pluripotent stem cells during reprogramming and self-renewal.
    Zhang J; Nuebel E; Daley GQ; Koehler CM; Teitell MA
    Cell Stem Cell; 2012 Nov; 11(5):589-95. PubMed ID: 23122286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MYC Controls Human Pluripotent Stem Cell Fate Decisions through Regulation of Metabolic Flux.
    Cliff TS; Wu T; Boward BR; Yin A; Yin H; Glushka JN; Prestegaard JH; Dalton S
    Cell Stem Cell; 2017 Oct; 21(4):502-516.e9. PubMed ID: 28965765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic switch and epithelial-mesenchymal transition cooperate to regulate pluripotency.
    Sun H; Yang X; Liang L; Zhang M; Li Y; Chen J; Wang F; Yang T; Meng F; Lai X; Li C; He J; He M; Xu Q; Li Q; Lin L; Pei D; Zheng H
    EMBO J; 2020 Apr; 39(8):e102961. PubMed ID: 32090361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial and glycolytic remodeling during nascent neural differentiation of human pluripotent stem cells.
    Lees JG; Gardner DK; Harvey AJ
    Development; 2018 Oct; 145(20):. PubMed ID: 30266828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Export and expression: mRNAs deliver new messages for controlling pluripotency.
    Saunders A; Wang J
    Cell Stem Cell; 2014 May; 14(5):549-50. PubMed ID: 24792108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comprehensive characterization of distinct states of human naive pluripotency generated by reprogramming.
    Liu X; Nefzger CM; Rossello FJ; Chen J; Knaupp AS; Firas J; Ford E; Pflueger J; Paynter JM; Chy HS; O'Brien CM; Huang C; Mishra K; Hodgson-Garms M; Jansz N; Williams SM; Blewitt ME; Nilsson SK; Schittenhelm RB; Laslett AL; Lister R; Polo JM
    Nat Methods; 2017 Nov; 14(11):1055-1062. PubMed ID: 28945704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.