BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 28683917)

  • 1. Striking Diversity in Holoenzyme Architecture and Extensive Conformational Variability in Biotin-Dependent Carboxylases.
    Tong L
    Adv Protein Chem Struct Biol; 2017; 109():161-194. PubMed ID: 28683917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and function of biotin-dependent carboxylases.
    Tong L
    Cell Mol Life Sci; 2013 Mar; 70(5):863-91. PubMed ID: 22869039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and function of a single-chain, multi-domain long-chain acyl-CoA carboxylase.
    Tran TH; Hsiao YS; Jo J; Chou CY; Dietrich LE; Walz T; Tong L
    Nature; 2015 Feb; 518(7537):120-4. PubMed ID: 25383525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure of the alpha(6)beta(6) holoenzyme of propionyl-coenzyme A carboxylase.
    Huang CS; Sadre-Bazzaz K; Shen Y; Deng B; Zhou ZH; Tong L
    Nature; 2010 Aug; 466(7309):1001-5. PubMed ID: 20725044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and substrate selectivity of the 750-kDa α6β6 holoenzyme of geranyl-CoA carboxylase.
    Jurado AR; Huang CS; Zhang X; Zhou ZH; Tong L
    Nat Commun; 2015 Nov; 6():8986. PubMed ID: 26593090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure of the 500-kDa yeast acetyl-CoA carboxylase holoenzyme dimer.
    Wei J; Tong L
    Nature; 2015 Oct; 526(7575):723-7. PubMed ID: 26458104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An unanticipated architecture of the 750-kDa α6β6 holoenzyme of 3-methylcrotonyl-CoA carboxylase.
    Huang CS; Ge P; Zhou ZH; Tong L
    Nature; 2011 Dec; 481(7380):219-23. PubMed ID: 22158123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A distinct holoenzyme organization for two-subunit pyruvate carboxylase.
    Choi PH; Jo J; Lin YC; Lin MH; Chou CY; Dietrich LEP; Tong L
    Nat Commun; 2016 Oct; 7():12713. PubMed ID: 27708276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterizing the importance of the biotin carboxylase domain dimer for Staphylococcus aureus pyruvate carboxylase catalysis.
    Yu LP; Chou CY; Choi PH; Tong L
    Biochemistry; 2013 Jan; 52(3):488-96. PubMed ID: 23286247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Early evolution of the biotin-dependent carboxylase family.
    Lombard J; Moreira D
    BMC Evol Biol; 2011 Aug; 11():232. PubMed ID: 21827699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular cloning and characterization of two genes for the biotin carboxylase and carboxyltransferase subunits of acetyl coenzyme A carboxylase in Myxococcus xanthus.
    Kimura Y; Miyake R; Tokumasu Y; Sato M
    J Bacteriol; 2000 Oct; 182(19):5462-9. PubMed ID: 10986250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The biotin enzyme family: conserved structural motifs and domain rearrangements.
    Jitrapakdee S; Wallace JC
    Curr Protein Pept Sci; 2003 Jun; 4(3):217-29. PubMed ID: 12769720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of a bifunctional archaeal acyl coenzyme A carboxylase.
    Chuakrut S; Arai H; Ishii M; Igarashi Y
    J Bacteriol; 2003 Feb; 185(3):938-47. PubMed ID: 12533469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plants contain multiple biotin enzymes: discovery of 3-methylcrotonyl-CoA carboxylase, propionyl-CoA carboxylase and pyruvate carboxylase in the plant kingdom.
    Wurtele ES; Nikolau BJ
    Arch Biochem Biophys; 1990 Apr; 278(1):179-86. PubMed ID: 2321957
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distribution and degradation of biotin-containing carboxylases in human cell lines.
    Chandler CS; Ballard FJ
    Biochem J; 1985 Dec; 232(2):385-93. PubMed ID: 2868710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous preparation of the three biotin-containing mitochondrial carboxylases from rat liver.
    Oei J; Robinson BH
    Biochim Biophys Acta; 1985 May; 840(1):1-5. PubMed ID: 3995077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure, mechanism and regulation of pyruvate carboxylase.
    Jitrapakdee S; St Maurice M; Rayment I; Cleland WW; Wallace JC; Attwood PV
    Biochem J; 2008 Aug; 413(3):369-87. PubMed ID: 18613815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plant biotin-containing carboxylases.
    Nikolau BJ; Ohlrogge JB; Wurtele ES
    Arch Biochem Biophys; 2003 Jun; 414(2):211-22. PubMed ID: 12781773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic characterization of mutations found in propionic acidemia and methylcrotonylglycinuria: evidence for cooperativity in biotin carboxylase.
    Sloane V; Waldrop GL
    J Biol Chem; 2004 Apr; 279(16):15772-8. PubMed ID: 14960587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular cloning and characterization of the cDNA coding for the biotin-containing subunit of 3-methylcrotonoyl-CoA carboxylase: identification of the biotin carboxylase and biotin-carrier domains.
    Song J; Wurtele ES; Nikolau BJ
    Proc Natl Acad Sci U S A; 1994 Jun; 91(13):5779-83. PubMed ID: 8016064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.