BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 28684528)

  • 21. Mesenchymal stem cells in myelodysplastic syndromes: phenotypic and cytogenetic characterization.
    Flores-Figueroa E; Arana-Trejo RM; Gutiérrez-Espíndola G; Pérez-Cabrera A; Mayani H
    Leuk Res; 2005 Feb; 29(2):215-24. PubMed ID: 15607371
    [TBL] [Abstract][Full Text] [Related]  

  • 22. PUMA promotes apoptosis of hematopoietic progenitors driving leukemic progression in a mouse model of myelodysplasia.
    Guirguis AA; Slape CI; Failla LM; Saw J; Tremblay CS; Powell DR; Rossello F; Wei A; Strasser A; Curtis DJ
    Cell Death Differ; 2016 Jun; 23(6):1049-59. PubMed ID: 26742432
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Luspatercept restores SDF-1-mediated hematopoietic support by MDS-derived mesenchymal stromal cells.
    Wobus M; Mies A; Asokan N; Oelschlägel U; Möbus K; Winter S; Cross M; Weidner H; Rauner M; Hofbauer LC; Bornhäuser M; Platzbecker U
    Leukemia; 2021 Oct; 35(10):2936-2947. PubMed ID: 34002031
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reduced rRNA expression and increased rDNA promoter methylation in CD34+ cells of patients with myelodysplastic syndromes.
    Raval A; Sridhar KJ; Patel S; Turnbull BB; Greenberg PL; Mitchell BS
    Blood; 2012 Dec; 120(24):4812-8. PubMed ID: 23071274
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stem and progenitor cells in myelodysplastic syndromes show aberrant stage-specific expansion and harbor genetic and epigenetic alterations.
    Will B; Zhou L; Vogler TO; Ben-Neriah S; Schinke C; Tamari R; Yu Y; Bhagat TD; Bhattacharyya S; Barreyro L; Heuck C; Mo Y; Parekh S; McMahon C; Pellagatti A; Boultwood J; Montagna C; Silverman L; Maciejewski J; Greally JM; Ye BH; List AF; Steidl C; Steidl U; Verma A
    Blood; 2012 Sep; 120(10):2076-86. PubMed ID: 22753872
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Overexpression of the novel oncogene SALL4 and activation of the Wnt/beta-catenin pathway in myelodysplastic syndromes.
    Shuai X; Zhou D; Shen T; Wu Y; Zhang J; Wang X; Li Q
    Cancer Genet Cytogenet; 2009 Oct; 194(2):119-24. PubMed ID: 19781444
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of rigosertib on the osteo-hematopoietic niche in myelodysplastic syndromes.
    Balaian E; Weidner H; Wobus M; Baschant U; Jacobi A; Mies A; Bornhäuser M; Guck J; Hofbauer LC; Rauner M; Platzbecker U
    Ann Hematol; 2019 Sep; 98(9):2063-2072. PubMed ID: 31312928
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Methylation of the CpG island near SOX7 gene promoter is correlated with the poor prognosis of patients with myelodysplastic syndrome.
    Fan R; Zhang LY; Wang H; Yang B; Han T; Zhao XL; Wang W; Wang XQ; Lin GW
    Tohoku J Exp Med; 2012 Jun; 227(2):119-28. PubMed ID: 22706399
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of a stroma-mediated Wnt/beta-catenin signal promoting self-renewal of hematopoietic stem cells in the stem cell niche.
    Kim JA; Kang YJ; Park G; Kim M; Park YO; Kim H; Leem SH; Chu IS; Lee JS; Jho EH; Oh IH
    Stem Cells; 2009 Jun; 27(6):1318-29. PubMed ID: 19489023
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bone marrow mesenchymal stromal cells in chronic myelomonocytic leukaemia: overactivated WNT/β-catenin signalling by parallel RNA sequencing and dysfunctional phenotypes.
    Xu R; Huang X; Li C; Deng C; Li M; Wu P; Geng S; Lai P; Lu Z; Weng J; Du X
    Br J Haematol; 2021 Jun; 193(5):928-940. PubMed ID: 33959953
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Efficacy of Yisui granule on myelodysplastic syndromes in SKM-1 mouse xenograft model through suppressing Wnt/β-catenin signaling pathway.
    Jieya WU; Li H; Xiaoyuan Z; Gullen E; Chong G; Jing W
    J Tradit Chin Med; 2024 Feb; 44(1):78-87. PubMed ID: 38213242
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Aberrant DNA methylation impacts HOX genes expression in bone marrow mesenchymal stromal cells of myelodysplastic syndromes and de novo acute myeloid leukemia.
    Roux B; Picou F; Debeissat C; Koubi M; Gallay N; Hirsch P; Ravalet N; Béné MC; Maigre M; Hunault M; Mosser J; Etcheverry A; Gyan E; Delhommeau F; Domenech J; Herault O
    Cancer Gene Ther; 2022 Aug; 29(8-9):1263-1275. PubMed ID: 35194200
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Oncogenic
    Osswald L; Hamarsheh S; Uhl FM; Andrieux G; Klein C; Dierks C; Duquesne S; Braun LM; Schmitt-Graeff A; Duyster J; Boerries M; Brummer T; Zeiser R
    Mol Cancer Res; 2021 Sep; 19(9):1596-1608. PubMed ID: 34088868
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Impact of combinatorial dysfunctions of Tet2 and Ezh2 on the epigenome in the pathogenesis of myelodysplastic syndrome.
    Hasegawa N; Oshima M; Sashida G; Matsui H; Koide S; Saraya A; Wang C; Muto T; Takane K; Kaneda A; Shimoda K; Nakaseko C; Yokote K; Iwama A
    Leukemia; 2017 Apr; 31(4):861-871. PubMed ID: 27694924
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Methylation of Wnt antagonist genes: a useful prognostic marker for myelodysplastic syndrome.
    Wang H; Fan R; Wang XQ; Wu DP; Lin GW; Xu Y; Li WY
    Ann Hematol; 2013 Jan; 92(2):199-209. PubMed ID: 23093371
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Progressive genomic instability in the Nup98-HoxD13 model of MDS correlates with loss of the PIG-A gene product.
    Byrne M; Bennett RL; Cheng X; May WS
    Neoplasia; 2014 Aug; 16(8):627-33. PubMed ID: 25220590
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hepatitis C virus core protein epigenetically silences SFRP1 and enhances HCC aggressiveness by inducing epithelial-mesenchymal transition.
    Quan H; Zhou F; Nie D; Chen Q; Cai X; Shan X; Zhou Z; Chen K; Huang A; Li S; Tang N
    Oncogene; 2014 May; 33(22):2826-35. PubMed ID: 23770846
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Impaired proliferative potential of bone marrow mesenchymal stromal cells in patients with myelodysplastic syndromes is associated with abnormal WNT signaling pathway.
    Pavlaki K; Pontikoglou CG; Demetriadou A; Batsali AK; Damianaki A; Simantirakis E; Kontakis M; Galanopoulos A; Kotsianidis I; Kastrinaki MC; Papadaki HA
    Stem Cells Dev; 2014 Jul; 23(14):1568-81. PubMed ID: 24617415
    [TBL] [Abstract][Full Text] [Related]  

  • 39. MacroH2A1.1 as a crossroad between epigenetics, inflammation and metabolism of mesenchymal stromal cells in myelodysplastic syndromes.
    Giallongo C; Dulcamare I; Giallongo S; Duminuco A; Pieragostino D; Cufaro MC; Amorini AM; Lazzarino G; Romano A; Parrinello N; Di Rosa M; Broggi G; Caltabiano R; Caraglia M; Scrima M; Pasquale LS; Tathode MS; Li Volti G; Motterlini R; Di Raimondo F; Tibullo D; Palumbo GA
    Cell Death Dis; 2023 Oct; 14(10):686. PubMed ID: 37852977
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biologic characteristics of bone marrow mesenchymal stem cells in myelodysplastic syndromes.
    Kastrinaki MC; Pontikoglou C; Klaus M; Stavroulaki E; Pavlaki K; Papadaki HA
    Curr Stem Cell Res Ther; 2011 Jun; 6(2):122-30. PubMed ID: 20528751
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.