BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 28684541)

  • 1. Consequences of mitotic slippage for antimicrotubule drug therapy.
    Cheng B; Crasta K
    Endocr Relat Cancer; 2017 Sep; 24(9):T97-T106. PubMed ID: 28684541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Autophagy Governs Protumorigenic Effects of Mitotic Slippage-induced Senescence.
    Jakhar R; Luijten MNH; Wong AXF; Cheng B; Guo K; Neo SP; Au B; Kulkarni M; Lim KJ; Maimaiti J; Chong HC; Lim EH; Tan TBK; Ong KW; Sim Y; Wong JSL; Khoo JBK; Ho JTS; Chua BT; Sinha I; Wang X; Connolly JE; Gunaratne J; Crasta KC
    Mol Cancer Res; 2018 Nov; 16(11):1625-1640. PubMed ID: 30037855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitosis inhibitors in anticancer therapy: When blocking the exit becomes a solution.
    Henriques AC; Ribeiro D; Pedrosa J; Sarmento B; Silva PMA; Bousbaa H
    Cancer Lett; 2019 Jan; 440-441():64-81. PubMed ID: 30312726
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mitotic checkpoint in cancer therapy.
    Tao W
    Cell Cycle; 2005 Nov; 4(11):1495-9. PubMed ID: 16258280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of chemical manipulation of mitotic arrest and slippage on cancer cell survival and proliferation.
    Riffell JL; Zimmerman C; Khong A; McHardy LM; Roberge M
    Cell Cycle; 2009 Sep; 8(18):3025-38. PubMed ID: 19713760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antiproliferative Fate of the Tetraploid Formed after Mitotic Slippage and Its Promotion; A Novel Target for Cancer Therapy Based on Microtubule Poisons.
    Nakayama Y; Inoue T
    Molecules; 2016 May; 21(5):. PubMed ID: 27213315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitosis and apoptosis: how is the balance set?
    Topham CH; Taylor SS
    Curr Opin Cell Biol; 2013 Dec; 25(6):780-5. PubMed ID: 23890995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. K858, a novel inhibitor of mitotic kinesin Eg5 and antitumor agent, induces cell death in cancer cells.
    Nakai R; Iida S; Takahashi T; Tsujita T; Okamoto S; Takada C; Akasaka K; Ichikawa S; Ishida H; Kusaka H; Akinaga S; Murakata C; Honda S; Nitta M; Saya H; Yamashita Y
    Cancer Res; 2009 May; 69(9):3901-9. PubMed ID: 19351824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of cancer cell survival by BCL2 family members upon prolonged mitotic arrest: opportunities for anticancer therapy.
    Barillé-Nion S; Bah N; Véquaud E; Juin P
    Anticancer Res; 2012 Oct; 32(10):4225-33. PubMed ID: 23060542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of hyperploid cell formation induced by microtubule inhibiting drug in glioma cell lines.
    Tsuiki H; Nitta M; Tada M; Inagaki M; Ushio Y; Saya H
    Oncogene; 2001 Jan; 20(4):420-9. PubMed ID: 11313973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PKCι depletion initiates mitotic slippage-induced senescence in glioblastoma.
    Restall IJ; Parolin DA; Daneshmand M; Hanson JE; Simard MA; Fitzpatrick ME; Kumar R; Lavictoire SJ; Lorimer IA
    Cell Cycle; 2015; 14(18):2938-48. PubMed ID: 26208522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Addressing a weakness of anticancer therapy with mitosis inhibitors: Mitotic slippage.
    Balachandran RS; Kipreos ET
    Mol Cell Oncol; 2017; 4(2):e1277293. PubMed ID: 28401182
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting mitosis for anti-cancer therapy.
    Sudakin V; Yen TJ
    BioDrugs; 2007; 21(4):225-33. PubMed ID: 17628120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tumor-Associated Macrophages Suppress the Cytotoxic Activity of Antimitotic Agents.
    Olson OC; Kim H; Quail DF; Foley EA; Joyce JA
    Cell Rep; 2017 Apr; 19(1):101-113. PubMed ID: 28380350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitotic drug targets.
    Kaestner P; Bastians H
    J Cell Biochem; 2010 Oct; 111(2):258-65. PubMed ID: 20518069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Post-slippage multinucleation renders cytotoxic variation in anti-mitotic drugs that target the microtubules or mitotic spindle.
    Zhu Y; Zhou Y; Shi J
    Cell Cycle; 2014; 13(11):1756-64. PubMed ID: 24694730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of 2',4'-dihydroxy-3,4,5-trimethoxychalcone as antimitotic agent that induces mitotic catastrophe in MCF-7 breast cancer cells.
    Masawang K; Pedro M; Cidade H; Reis RM; Neves MP; Corrêa AG; Sudprasert W; Bousbaa H; Pinto MM
    Toxicol Lett; 2014 Sep; 229(2):393-401. PubMed ID: 24968064
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitotic drug targets and the development of novel anti-mitotic anticancer drugs.
    Schmidt M; Bastians H
    Drug Resist Updat; 2007; 10(4-5):162-81. PubMed ID: 17669681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chelidonine induces mitotic slippage and apoptotic-like death in SGC-7901 human gastric carcinoma cells.
    Qu Z; Zou X; Zhang X; Sheng J; Wang Y; Wang J; Wang C; Ji Y
    Mol Med Rep; 2016 Feb; 13(2):1336-44. PubMed ID: 26677104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Caspase-3-dependent mitotic checkpoint inactivation by the small-molecule inducers of mitotic slippage SU6656 and geraldol.
    Riffell JL; Jänicke RU; Roberge M
    Mol Cancer Ther; 2011 May; 10(5):839-49. PubMed ID: 21441410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.