BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

545 related articles for article (PubMed ID: 28684602)

  • 1. Pathways and Mechanisms that Prevent Genome Instability in
    Putnam CD; Kolodner RD
    Genetics; 2017 Jul; 206(3):1187-1225. PubMed ID: 28684602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple pathways cooperate in the suppression of genome instability in Saccharomyces cerevisiae.
    Myung K; Chen C; Kolodner RD
    Nature; 2001 Jun; 411(6841):1073-6. PubMed ID: 11429610
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutator genes for suppression of gross chromosomal rearrangements identified by a genome-wide screening in Saccharomyces cerevisiae.
    Smith S; Hwang JY; Banerjee S; Majeed A; Gupta A; Myung K
    Proc Natl Acad Sci U S A; 2004 Jun; 101(24):9039-44. PubMed ID: 15184655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analyzing Genome Rearrangements in Saccharomyces cerevisiae.
    Srivatsan A; Putnam CD; Kolodner RD
    Methods Mol Biol; 2018; 1672():43-61. PubMed ID: 29043616
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitotic checkpoint function in the formation of gross chromosomal rearrangements in Saccharomyces cerevisiae.
    Myung K; Smith S; Kolodner RD
    Proc Natl Acad Sci U S A; 2004 Nov; 101(45):15980-5. PubMed ID: 15514023
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Induction of genome instability by DNA damage in Saccharomyces cerevisiae.
    Myung K; Kolodner RD
    DNA Repair (Amst); 2003 Mar; 2(3):243-58. PubMed ID: 12547388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Suppression of genomic instability by SLX5 and SLX8 in Saccharomyces cerevisiae.
    Zhang C; Roberts TM; Yang J; Desai R; Brown GW
    DNA Repair (Amst); 2006 Mar; 5(3):336-46. PubMed ID: 16325482
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of gross chromosomal rearrangement rates.
    Putnam CD; Kolodner RD
    Cold Spring Harb Protoc; 2010 Sep; 2010(9):pdb.prot5492. PubMed ID: 20810639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased genome instability and telomere length in the elg1-deficient Saccharomyces cerevisiae mutant are regulated by S-phase checkpoints.
    Banerjee S; Myung K
    Eukaryot Cell; 2004 Dec; 3(6):1557-66. PubMed ID: 15590829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measuring the rate of gross chromosomal rearrangements in Saccharomyces cerevisiae: A practical approach to study genomic rearrangements observed in cancer.
    Motegi A; Myung K
    Methods; 2007 Feb; 41(2):168-76. PubMed ID: 17189859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recombination and the Tel1 and Mec1 checkpoints differentially effect genome rearrangements driven by telomere dysfunction in yeast.
    Pennaneach V; Kolodner RD
    Nat Genet; 2004 Jun; 36(6):612-7. PubMed ID: 15133512
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SGS1, the Saccharomyces cerevisiae homologue of BLM and WRN, suppresses genome instability and homeologous recombination.
    Myung K; Datta A; Chen C; Kolodner RD
    Nat Genet; 2001 Jan; 27(1):113-6. PubMed ID: 11138010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid analysis of Saccharomyces cerevisiae genome rearrangements by multiplex ligation-dependent probe amplification.
    Chan JE; Kolodner RD
    PLoS Genet; 2012; 8(3):e1002539. PubMed ID: 22396658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Suppression of genome instability by redundant S-phase checkpoint pathways in Saccharomyces cerevisiae.
    Myung K; Kolodner RD
    Proc Natl Acad Sci U S A; 2002 Apr; 99(7):4500-7. PubMed ID: 11917116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A genetic network that suppresses genome rearrangements in Saccharomyces cerevisiae and contains defects in cancers.
    Putnam CD; Srivatsan A; Nene RV; Martinez SL; Clotfelter SP; Bell SN; Somach SB; de Souza JE; Fonseca AF; de Souza SJ; Kolodner RD
    Nat Commun; 2016 Apr; 7():11256. PubMed ID: 27071721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms underlying genome instability mediated by formation of foldback inversions in
    Li BZ; Putnam CD; Kolodner RD
    Elife; 2020 Aug; 9():. PubMed ID: 32762846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A screen for suppressors of gross chromosomal rearrangements identifies a conserved role for PLP in preventing DNA lesions.
    Kanellis P; Gagliardi M; Banath JP; Szilard RK; Nakada S; Galicia S; Sweeney FD; Cabelof DC; Olive PL; Durocher D
    PLoS Genet; 2007 Aug; 3(8):e134. PubMed ID: 17696614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA repair pathway selection caused by defects in TEL1, SAE2, and de novo telomere addition generates specific chromosomal rearrangement signatures.
    Putnam CD; Pallis K; Hayes TK; Kolodner RD
    PLoS Genet; 2014 Apr; 10(4):e1004277. PubMed ID: 24699249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants.
    Chen C; Kolodner RD
    Nat Genet; 1999 Sep; 23(1):81-5. PubMed ID: 10471504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A genetic and structural study of genome rearrangements mediated by high copy repeat Ty1 elements.
    Chan JE; Kolodner RD
    PLoS Genet; 2011 May; 7(5):e1002089. PubMed ID: 21637792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.