These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 28684683)

  • 1. Single Carrier with Frequency Domain Equalization for Synthetic Aperture Underwater Acoustic Communications.
    He C; Xi R; Wang H; Jing L; Shi W; Zhang Q
    Sensors (Basel); 2017 Jul; 17(7):. PubMed ID: 28684683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bandwidth-efficient frequency-domain equalization for single carrier multiple-input multiple-output underwater acoustic communications.
    Zhang J; Zheng YR
    J Acoust Soc Am; 2010 Nov; 128(5):2910-9. PubMed ID: 21110586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving Passive Time Reversal Underwater Acoustic Communications Using Subarray Processing.
    He C; Jing L; Xi R; Li Q; Zhang Q
    Sensors (Basel); 2017 Apr; 17(4):. PubMed ID: 28441763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-rate synthetic aperture communications in shallow water.
    Song HC; Hodgkiss WS; Kuperman WA; Akal T; Stevenson M
    J Acoust Soc Am; 2009 Dec; 126(6):3057-61. PubMed ID: 20000919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Filtered Multitone Modulation Underwater Acoustic Communications Using Low-Complexity Channel-Estimation-Based MMSE Turbo Equalization.
    Sun L; Wang M; Zhang G; Li H; Huang L
    Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31212900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Joint Time-Reversal Space-Time Block Coding and Adaptive Equalization for Filtered Multitone Underwater Acoustic Communications.
    Sun L; Yan M; Li H; Xu Y
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31936652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Frequency-domain equalization with interference rejection combining for single carrier multiple-input multiple-output underwater acoustic communications.
    Yin J; Ge W; Han X; Guo L
    J Acoust Soc Am; 2020 Feb; 147(2):EL138. PubMed ID: 32113331
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An enhanced iterative receiver based on vector approximate message passing for deep-sea vertical underwater acoustic communications.
    Li D; Wu Y; Zhu M; Tao J
    J Acoust Soc Am; 2021 Mar; 149(3):1549. PubMed ID: 33765778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance analysis of satellite-to-ground downlink coherent optical communications with spatial diversity over Gamma-Gamma atmospheric turbulence.
    Ma J; Li K; Tan L; Yu S; Cao Y
    Appl Opt; 2015 Sep; 54(25):7575-85. PubMed ID: 26368880
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prefiltered Single-Carrier Frequency-Domain Equalization for Binary CPM over Shallow Water Acoustic Channel.
    Han R; Jia N; Guo Z; Huang J; Xiao D; Guo S
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 56-m/3.31-Gbps underwater wireless optical communication employing Nyquist single carrier frequency domain equalization with noise prediction.
    Chen X; Lyu W; Zhang Z; Zhao J; Xu J
    Opt Express; 2020 Aug; 28(16):23784-23795. PubMed ID: 32752370
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance analysis of fiber-based free-space optical communications with coherent detection spatial diversity.
    Li K; Ma J; Tan L; Yu S; Zhai C
    Appl Opt; 2016 Jun; 55(17):4649-56. PubMed ID: 27409022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-carrier frequency-domain turbo equalization without cyclic prefix or zero padding for underwater acoustic communications.
    Wang L; Tao J; Zheng YR
    J Acoust Soc Am; 2012 Dec; 132(6):3809-17. PubMed ID: 23231110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-domain oversampled orthogonal signal-division multiplexing underwater acoustic communications.
    Han J; Wang Y; Zhang L; Leus G
    J Acoust Soc Am; 2019 Jan; 145(1):292. PubMed ID: 30710974
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial diversity processing mechanism based on the distributed underwater acoustic communication system.
    Zhou M; Zhang H; Lv T; Gao Y; Duan Y
    PLoS One; 2024; 19(1):e0296117. PubMed ID: 38165990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Feasibility of global-scale synthetic aperture communications.
    Song HC; Dzieciuch M
    J Acoust Soc Am; 2009 Jan; 125(1):8-10. PubMed ID: 19173386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time domain turbo equalization based on vector approximate message passing for multiple-input multiple-output underwater acoustic communications.
    Li WZ; Han X; Zhu GJ; Yin JW
    J Acoust Soc Am; 2024 Feb; 155(2):854-866. PubMed ID: 38310609
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental Results of Underwater Acoustic Communication with Nonlinear Frequency Modulation Waveform.
    An J; Ra H; Youn C; Kim K
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770501
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomimicking Covert Communication by Time-Frequency Shift Modulation for Increasing Mimicking and BER Performances.
    Ahn J; Lee H; Kim Y; Kim W; Chung J
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33804747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expectation-maximization vector approximate message passing-based frequency-domain turbo equalization for underwater acoustic communications.
    Zhang X; Tao J; Li D; Wu Y; Chen W
    J Acoust Soc Am; 2023 Nov; 154(5):3344-3353. PubMed ID: 37988374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.