BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 28684687)

  • 1. High Ultraviolet Absorption in Colloidal Gallium Nanoparticles Prepared from Thermal Evaporation.
    Nucciarelli F; Bravo I; Catalan-Gomez S; Vázquez L; Lorenzo E; Pau JL
    Nanomaterials (Basel); 2017 Jul; 7(7):. PubMed ID: 28684687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and characterization of gallium colloidal nanoparticles.
    Meléndrez MF; Cárdenas G; Arbiol J
    J Colloid Interface Sci; 2010 Jun; 346(2):279-87. PubMed ID: 20378122
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectrally broad plasmonic absorption in Ga and In nanoparticle hybrids.
    Gordillo N; Catalán-Gómez S; Pau JL; Redondo-Cubero A
    Nanotechnology; 2019 Nov; 30(47):475705. PubMed ID: 31426038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Composition-Controlled Synthesis of Hybrid Perovskite Nanoparticles by Ionic Metathesis: Bandgap Engineering Studies from Experiments and Theoretical Calculations.
    Roy M; Vikram ; Banerjee S; Mitra A; Alam A; Aslam M
    Chemistry; 2019 Jul; 25(42):9892-9901. PubMed ID: 30868665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmonic coupling in closed-packed ordered gallium nanoparticles.
    Catalán-Gómez S; Bran C; Vázquez M; Vázquez L; Pau JL; Redondo-Cubero A
    Sci Rep; 2020 Mar; 10(1):4187. PubMed ID: 32144349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-temperature processed Ga-doped ZnO coatings from colloidal inks.
    Della Gaspera E; Bersani M; Cittadini M; Guglielmi M; Pagani D; Noriega R; Mehra S; Salleo A; Martucci A
    J Am Chem Soc; 2013 Mar; 135(9):3439-48. PubMed ID: 23394063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tunable plasmonic resonance of gallium nanoparticles by thermal oxidation at low temperaturas.
    Catalán-Gómez S; Redondo-Cubero A; Palomares FJ; Nucciarelli F; Pau JL
    Nanotechnology; 2017 Oct; 28(40):405705. PubMed ID: 28787277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reflectivity spectra and colors of porous anodic aluminum oxide containing silver nanoparticles by plasmonic absorption.
    Hu Q; Lee HH; Jeong DY; Kim YS; Kim KB; Xu J; Yoon TS
    J Nanosci Nanotechnol; 2012 Mar; 12(3):1979-83. PubMed ID: 22755008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gallium plasmonics: deep subwavelength spectroscopic imaging of single and interacting gallium nanoparticles.
    Knight MW; Coenen T; Yang Y; Brenny BJ; Losurdo M; Brown AS; Everitt HO; Polman A
    ACS Nano; 2015 Feb; 9(2):2049-60. PubMed ID: 25629392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Room-Temperature and Aqueous-Phase Synthesis of Plasmonic Molybdenum Oxide Nanoparticles for Visible-Light-Enhanced Hydrogen Generation.
    Shi J; Kuwahara Y; Wen M; Navlani-García M; Mori K; An T; Yamashita H
    Chem Asian J; 2016 Sep; 11(17):2377-81. PubMed ID: 27555123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reversible Size Control of Liquid-Metal Nanoparticles under Ultrasonication.
    Yamaguchi A; Mashima Y; Iyoda T
    Angew Chem Int Ed Engl; 2015 Oct; 54(43):12809-13. PubMed ID: 26331350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aggregation-Driven Controllable Plasmonic Transition of Silica-Coated Gold Nanoparticles with Temperature-Dependent Polymer-Nanoparticle Interactions for Potential Applications in Optoelectronic Devices.
    Kwon NK; Lee TK; Kwak SK; Kim SY
    ACS Appl Mater Interfaces; 2017 Nov; 9(45):39688-39698. PubMed ID: 29053247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insight on the Coupling of Plasmonic Nanoparticles from Near-Field Spectra Determined via Discrete Dipole Approximations.
    Barr JW; Gomrok S; Chaffin E; Huang X; Wang Y
    J Phys Chem C Nanomater Interfaces; 2021 Mar; 125(9):5260-5268. PubMed ID: 34367408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Research on the preparation and optical absorption properties of two-dimensional ZnO array].
    Qiao L; Zhu YB; Xu H
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Aug; 34(8):2031-4. PubMed ID: 25474929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monodisperse colloidal gallium nanoparticles: synthesis, low temperature crystallization, surface plasmon resonance and Li-ion storage.
    Yarema M; Wörle M; Rossell MD; Erni R; Caputo R; Protesescu L; Kravchyk KV; Dirin DN; Lienau K; von Rohr F; Schilling A; Nachtegaal M; Kovalenko MV
    J Am Chem Soc; 2014 Sep; 136(35):12422-30. PubMed ID: 25133552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient plasmonic scattering of colloidal silver particles through annealing-induced changes.
    Ott A; Ring S; Yin G; Calvet W; Stannowski B; Schlatmann R; Ballauff M
    Nanotechnology; 2014 Nov; 25(45):455706. PubMed ID: 25338823
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficiency Enhancement of Perovskite Solar Cells with Plasmonic Nanoparticles: A Simulation Study.
    Hajjiah A; Kandas I; Shehata N
    Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30189675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Small molecule- and amino acid-induced aggregation of gold nanoparticles.
    Zakaria HM; Shah A; Konieczny M; Hoffmann JA; Nijdam AJ; Reeves ME
    Langmuir; 2013 Jun; 29(25):7661-73. PubMed ID: 23718319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of dye degradation efficiency using ZnO powders with various size scales.
    Wang H; Xie C; Zhang W; Cai S; Yang Z; Gui Y
    J Hazard Mater; 2007 Mar; 141(3):645-52. PubMed ID: 16930825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast Assembly of Gold Nanoparticles in Large-Area 2D Nanogrids Using a One-Step, Near-Infrared Radiation-Assisted Evaporation Process.
    Utgenannt A; Maspero R; Fortini A; Turner R; Florescu M; Jeynes C; Kanaras AG; Muskens OL; Sear RP; Keddie JL
    ACS Nano; 2016 Feb; 10(2):2232-42. PubMed ID: 26767891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.