These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 28684705)

  • 1. Measuring the Transition Rates of Coalescence Events during Double Phase Separation in Microgravity.
    Oprisan A; Garrabos Y; Lecoutre C; Beysens D
    Molecules; 2017 Jul; 22(7):. PubMed ID: 28684705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pattern Evolution during Double Liquid-Vapor Phase Transitions under Weightlessness.
    Oprisan A; Garrabos Y; Lecoutre C; Beysens D
    Molecules; 2017 Jun; 22(6):. PubMed ID: 28598367
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dimple coalescence and liquid droplets distributions during phase separation in a pure fluid under microgravity.
    Oprisan A; Oprisan SA; Hegseth JJ; Garrabos Y; Lecoutre-Chabot C; Beysens D
    Eur Phys J E Soft Matter; 2014 Sep; 37(9):41. PubMed ID: 25260326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of a wetting layer and Marangoni convection in microgravity.
    Oprisan A; Hegseth JJ; Smith GM; Lecoutre C; Garrabos Y; Beysens DA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 1):021202. PubMed ID: 21928983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coarsening mechanism of phase separation caused by a double temperature quench in an off-symmetric binary mixture.
    Sigehuzi T; Tanaka H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 1):051504. PubMed ID: 15600621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulations of droplet coalescence in simple shear flow.
    Shardt O; Derksen JJ; Mitra SK
    Langmuir; 2013 May; 29(21):6201-12. PubMed ID: 23642079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Momentum effects in steady nucleate pool boiling during microgravity.
    Merte H
    Ann N Y Acad Sci; 2004 Nov; 1027():196-216. PubMed ID: 15644357
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical simulation and experimental validation of the dynamics of multiple bubble merger during pool boiling under microgravity conditions.
    Abarajith HS; Dhir VK; Warrier G; Son G
    Ann N Y Acad Sci; 2004 Nov; 1027():235-58. PubMed ID: 15644359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental Investigation of the Orthokinetic Coalescence Efficiency of Droplets in Simple Shear Flow.
    Mousa H; Agterof W; Mellema J
    J Colloid Interface Sci; 2001 Aug; 240(1):340-348. PubMed ID: 11446817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Collisions of Two-Phase Liquid Droplets in a Heated Gas Medium.
    Tkachenko P; Shlegel N; Strizhak P
    Entropy (Basel); 2021 Nov; 23(11):. PubMed ID: 34828174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Universality in early-stage growth of phase-separating domains near the critical point.
    Oprisan A; Oprisan SA; Hegseth JJ; Garrabos Y; Lecoutre-Chabot C; Beysens D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 May; 77(5 Pt 1):051118. PubMed ID: 18643037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Behavior Evolution of Droplets Suspended in Castor Oil under Alternating Current Electric Field.
    Ou G; Li J; Jin Y; Chen M; Ma Y; Gao K
    Langmuir; 2022 Feb; 38(6):2084-2093. PubMed ID: 35119874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced Jumping-Droplet Departure.
    Kim MK; Cha H; Birbarah P; Chavan S; Zhong C; Xu Y; Miljkovic N
    Langmuir; 2015 Dec; 31(49):13452-66. PubMed ID: 26571384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coalescence Dynamics of Acoustically Levitated Droplets.
    Hasegawa K; Watanabe A; Kaneko A; Abe Y
    Micromachines (Basel); 2020 Mar; 11(4):. PubMed ID: 32224992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coalescence of Binary Droplets in the Transformer Oil Based on Small Amounts of Polymer: Effects of Initial Droplet Diameter and Collision Parameter.
    Wang Y; Qian L; Chen Z; Zhou F
    Polymers (Basel); 2020 Sep; 12(9):. PubMed ID: 32917051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computer simulation of phase separation under a double temperature quench.
    Podariu I; Chakrabarti A
    J Chem Phys; 2007 Apr; 126(15):154509. PubMed ID: 17461649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation of vapor-liquid coexistence in finite volumes: a method to compute the surface free energy of droplets.
    Schrader M; Virnau P; Binder K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 1):061104. PubMed ID: 19658470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Droplet coalescence and phase separation in a topical ointment: Effects of fluid shear and temperature.
    Haghighat AK; Olsen MG; Vigil RD; Sarkar A
    Int J Pharm; 2020 Dec; 591():119872. PubMed ID: 33065222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase separation in two-dimensional binary fluid mixtures: spontaneous pinning effect.
    Tang YL; Ma YQ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jun; 65(6 Pt 1):061501. PubMed ID: 12188726
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.