These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 28684766)

  • 1. Broadband Absorption and Efficient Hot-Carrier Photovoltaic Conversion based on Sunlight-induced Non-radiative Decay of Propagating Surface Plasmon Polaritons.
    Hu M; Yang L; Dai H; He S
    Sci Rep; 2017 Jul; 7(1):4809. PubMed ID: 28684766
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrocatalytic glycerol oxidation enabled by surface plasmon polariton-induced hot carriers in Kretschmann configuration.
    Chung K; Zhu X; Zhuo X; Jang YJ; Choi CH; Lee JS; Kim SH; Kim M; Kim K; Kim D; Ham HC; Baba A; Wang J; Kim DH
    Nanoscale; 2019 Dec; 11(48):23234-23240. PubMed ID: 31782461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface plasmon polariton-induced hot carrier generation for photocatalysis.
    Ahn W; Ratchford DC; Pehrsson PE; Simpkins BS
    Nanoscale; 2017 Mar; 9(9):3010-3022. PubMed ID: 28182184
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Local and anisotropic excitation of surface plasmon polaritons by semiconductor nanowires.
    Rümke TM; Sánchez-Gil JA; Muskens OL; Borgström MT; Bakkers EP; Gómez Rivas J
    Opt Express; 2008 Mar; 16(7):5013-21. PubMed ID: 18542602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visualizing the bidirectional electron transfer in a Schottky junction consisting of single CdS nanoparticles and a planar gold film.
    Li Z; Fang Y; Wang Y; Jiang Y; Liu T; Wang W
    Chem Sci; 2017 Jul; 8(7):5019-5023. PubMed ID: 30155222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinguishing between plasmon-induced and photoexcited carriers in a device geometry.
    Zheng BY; Zhao H; Manjavacas A; McClain M; Nordlander P; Halas NJ
    Nat Commun; 2015 Jul; 6():7797. PubMed ID: 26165521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study of coupling efficiency of molecules to surface plasmon polaritons in surface-enhanced Raman scattering (SERS).
    Chan CY; Cao ZL; Ong HC
    Opt Express; 2013 Jun; 21(12):14674-82. PubMed ID: 23787656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the plasmonic photovoltaic.
    Mubeen S; Lee J; Lee WR; Singh N; Stucky GD; Moskovits M
    ACS Nano; 2014 Jun; 8(6):6066-73. PubMed ID: 24861280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Harvesting of surface plasmon polaritons: Role of the confinement factor.
    Gong ZY; Xie Z; Tian G; Duan S; Luo Y
    J Chem Phys; 2020 Sep; 153(9):094107. PubMed ID: 32891094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantifying Remote Heating from Propagating Surface Plasmon Polaritons.
    Evans CI; Zolotavin P; Alabastri A; Yang J; Nordlander P; Natelson D
    Nano Lett; 2017 Sep; 17(9):5646-5652. PubMed ID: 28796525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In-Plane Radiation of Surface Plasmon Polaritons Excited by Free Electrons.
    Zhang P; Dong Y; Li X; Cao X; Yang Y; Yu G; Yang S; Wang S; Gong Y
    Micromachines (Basel); 2024 May; 15(6):. PubMed ID: 38930693
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A spatially pinned surface plasmon through short-circuiting electronic oscillation in waveguide-sustained SPPs.
    Fu Y; Zhang X; Wang M; Zhang X
    Nanoscale; 2020 Nov; 12(42):21703-21712. PubMed ID: 33094789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Efficiency Nanowire Solar Cells with Omnidirectionally Enhanced Absorption Due to Self-Aligned Indium-Tin-Oxide Mie Scatterers.
    van Dam D; van Hoof NJ; Cui Y; van Veldhoven PJ; Bakkers EP; Gómez Rivas J; Haverkort JE
    ACS Nano; 2016 Dec; 10(12):11414-11419. PubMed ID: 28024324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmon resonances in semiconductor materials for detecting photocatalysis at the single-particle level.
    Yan J; Lin Z; Ma C; Zheng Z; Liu P; Yang G
    Nanoscale; 2016 Aug; 8(32):15001-7. PubMed ID: 27469299
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrical excitation of surface plasmons.
    Bharadwaj P; Bouhelier A; Novotny L
    Phys Rev Lett; 2011 Jun; 106(22):226802. PubMed ID: 21702623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dispersion of surface plasmon polaritons on metal wires in the terahertz frequency range.
    Wang K; Mittleman DM
    Phys Rev Lett; 2006 Apr; 96(15):157401. PubMed ID: 16712193
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strong broadband absorption in GaAs nanocone and nanowire arrays for solar cells.
    Wang B; Stevens E; Leu PW
    Opt Express; 2014 Mar; 22 Suppl 2():A386-95. PubMed ID: 24922248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Broadband unidirectional generation of surface plasmon polaritons with dielectric-film-coated asymmetric single-slit.
    Chen J; Li Z; Lei M; Yue S; Xiao J; Gong Q
    Opt Express; 2011 Dec; 19(27):26463-9. PubMed ID: 22274231
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Schottky-contact plasmonic dipole rectenna concept for biosensing.
    Alavirad M; Mousavi SS; Roy L; Berini P
    Opt Express; 2013 Feb; 21(4):4328-47. PubMed ID: 23481966
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmonic photosensitization of a wide band gap semiconductor: converting plasmons to charge carriers.
    Mubeen S; Hernandez-Sosa G; Moses D; Lee J; Moskovits M
    Nano Lett; 2011 Dec; 11(12):5548-52. PubMed ID: 22040462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.