These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 28684779)

  • 1. Beaming and enhanced transmission through a subwavelength aperture via epsilon-near-zero media.
    Hajian H; Ozbay E; Caglayan H
    Sci Rep; 2017 Jul; 7(1):4741. PubMed ID: 28684779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Funneling light through a subwavelength aperture with epsilon-near-zero materials.
    Adams DC; Inampudi S; Ribaudo T; Slocum D; Vangala S; Kuhta NA; Goodhue WD; Podolskiy VA; Wasserman D
    Phys Rev Lett; 2011 Sep; 107(13):133901. PubMed ID: 22026854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tunneling of electromagnetic energy through subwavelength channels and bends using epsilon-near-zero materials.
    Silveirinha M; Engheta N
    Phys Rev Lett; 2006 Oct; 97(15):157403. PubMed ID: 17155357
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Giant Enhancement of Second-Order Nonlinearity of Epsilon-near- Zero Medium by a Plasmonic Metasurface.
    Deng J; Tang Y; Chen S; Li K; Zayats AV; Li G
    Nano Lett; 2020 Jul; 20(7):5421-5427. PubMed ID: 32496801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electronically-engineered metasurface for directional beaming of electromagnetic waves through a subwavelength aperture.
    Feng R; Ratni B; Yi J; de Lustrac A; Zhang H; Burokur SN
    Opt Express; 2019 Nov; 27(24):35774-35783. PubMed ID: 31878744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental verification of epsilon-near-zero plasmon polariton modes in degenerately doped semiconductor nanolayers.
    Campione S; Kim I; de Ceglia D; Keeler GA; Luk TS
    Opt Express; 2016 Aug; 24(16):18782-9. PubMed ID: 27505841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spin Hall effect of transmitted light in a three-layer waveguide with lossy epsilon-near-zero metamaterial.
    Tang T; Li J; Zhang Y; Li C; Luo L
    Opt Express; 2016 Nov; 24(24):28113-28121. PubMed ID: 27906376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extreme local field enhancement by hybrid epsilon-near-zero-plasmon mode in thin films of transparent conductive oxides.
    Reddy IVAK; Jornet JM; Baev A; Prasad PN
    Opt Lett; 2020 Oct; 45(20):5744-5747. PubMed ID: 33057274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Funneling Spontaneous Emission into Waveguides via Epsilon-Near-Zero Metamaterials.
    Channab M; Pirri CF; Angelini A
    Nanomaterials (Basel); 2021 May; 11(6):. PubMed ID: 34071754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Broadband frequency translation through time refraction in an epsilon-near-zero material.
    Zhou Y; Alam MZ; Karimi M; Upham J; Reshef O; Liu C; Willner AE; Boyd RW
    Nat Commun; 2020 May; 11(1):2180. PubMed ID: 32358528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Side scattering shadow and energy concentration effects of epsilon-near-zero media.
    Song J; Luo J; Lai Y
    Opt Lett; 2018 Apr; 43(8):1738-1741. PubMed ID: 29652353
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electromagnetic properties of magnetic epsilon-near-zero medium with dielectric dopants.
    Zhao L; Feng Y; Zhu B; Zhao J
    Opt Express; 2019 Jul; 27(14):20073-20083. PubMed ID: 31503757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies.
    Liu R; Cheng Q; Hand T; Mock JJ; Cui TJ; Cummer SA; Smith DR
    Phys Rev Lett; 2008 Jan; 100(2):023903. PubMed ID: 18232869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Designed Broadband Absorber Based on ENZ Mode Incorporating Plasmonic Metasurfaces.
    Dang PT; Le KQ; Lee JH; Nguyen TK
    Micromachines (Basel); 2019 Oct; 10(10):. PubMed ID: 31590301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optically induced metal-to-dielectric transition in Epsilon-Near-Zero metamaterials.
    Kaipurath RM; Pietrzyk M; Caspani L; Roger T; Clerici M; Rizza C; Ciattoni A; Di Falco A; Faccio D
    Sci Rep; 2016 Jun; 6():27700. PubMed ID: 27292270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Solution-Processed Ultrafast Optical Switch Based on a Nanostructured Epsilon-Near-Zero Medium.
    Guo Q; Cui Y; Yao Y; Ye Y; Yang Y; Liu X; Zhang S; Liu X; Qiu J; Hosono H
    Adv Mater; 2017 Jul; 29(27):. PubMed ID: 28466957
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamical Control of Broadband Coherent Absorption in ENZ Films.
    Bruno V; Vezzoli S; DeVault C; Roger T; Ferrera M; Boltasseva A; Shalaev VM; Faccio D
    Micromachines (Basel); 2020 Jan; 11(1):. PubMed ID: 31968578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extremely anisotropic epsilon-near-zero media in waveguide metamaterials.
    Ji W; Luo J; Lai Y
    Opt Express; 2019 Jul; 27(14):19463-19473. PubMed ID: 31503705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flat metasurfaces to collimate electromagnetic waves with high efficiency.
    Zhu H; Xu T; Wang Z; Li J; Hang Z; Zhou L; Chen S; Li X; Chen L
    Opt Express; 2018 Oct; 26(22):28531-28543. PubMed ID: 30470029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adiabatic Frequency Conversion Using a Time-Varying Epsilon-Near-Zero Metasurface.
    Pang K; Alam MZ; Zhou Y; Liu C; Reshef O; Manukyan K; Voegtle M; Pennathur A; Tseng C; Su X; Song H; Zhao Z; Zhang R; Song H; Hu N; Almaiman A; Dawlaty JM; Boyd RW; Tur M; Willner AE
    Nano Lett; 2021 Jul; 21(14):5907-5913. PubMed ID: 34251831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.