These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 28684990)
1. An eco-compatible strategy for the diversity-oriented synthesis of macrocycles exploiting carbohydrate-derived building blocks. Maurya SK; Rana R Beilstein J Org Chem; 2017; 13():1106-1118. PubMed ID: 28684990 [TBL] [Abstract][Full Text] [Related]
2. Diversity-oriented synthesis of drug-like macrocyclic scaffolds using an orthogonal organo- and metal catalysis strategy. Grossmann A; Bartlett S; Janecek M; Hodgkinson JT; Spring DR Angew Chem Int Ed Engl; 2014 Nov; 53(48):13093-7. PubMed ID: 25257387 [TBL] [Abstract][Full Text] [Related]
3. Efficient access to new chemical space through flow--construction of druglike macrocycles through copper-surface-catalyzed azide-alkyne cycloaddition reactions. Bogdan AR; James K Chemistry; 2010 Dec; 16(48):14506-12. PubMed ID: 21038332 [TBL] [Abstract][Full Text] [Related]
4. Unexpected Reactions of Terminal Alkynes in Targeted "Click Chemistry'' Coppercatalyzed Azide-alkyne Cycloadditions. Ali TH; Heidelberg T; Hussen RSD; Tajuddin HA Curr Org Synth; 2019; 16(8):1143-1148. PubMed ID: 31984920 [TBL] [Abstract][Full Text] [Related]
5. Visible-Light-Mediated Click Chemistry for Highly Regioselective Azide-Alkyne Cycloaddition by a Photoredox Electron-Transfer Strategy. Wu ZG; Liao XJ; Yuan L; Wang Y; Zheng YX; Zuo JL; Pan Y Chemistry; 2020 May; 26(25):5694-5700. PubMed ID: 31953964 [TBL] [Abstract][Full Text] [Related]
7. Diversity-Oriented Peptide Stapling: A Third Generation Copper-Catalysed Azide-Alkyne Cycloaddition Stapling and Functionalisation Strategy. Tran PT; Larsen CØ; Røndbjerg T; De Foresta M; Kunze MB; Marek A; Løper JH; Boyhus LE; Knuhtsen A; Lindorff-Larsen K; Pedersen DS Chemistry; 2017 Mar; 23(14):3490-3495. PubMed ID: 28106305 [TBL] [Abstract][Full Text] [Related]
8. A DNA-Encoded Chemical Library Based on Peptide Macrocycles. Onda Y; Bassi G; Elsayed A; Ulrich F; Oehler S; Plais L; Scheuermann J; Neri D Chemistry; 2021 Apr; 27(24):7160-7167. PubMed ID: 33586277 [TBL] [Abstract][Full Text] [Related]
9. Catalytic "active-metal" template synthesis of [2]rotaxanes, [3]rotaxanes, and molecular shuttles, and some observations on the mechanism of the cu(i)-catalyzed azide-alkyne 1,3-cycloaddition. Aucagne V; Berna J; Crowley JD; Goldup SM; Hänni KD; Leigh DA; Lusby PJ; Ronaldson VE; Slawin AM; Viterisi A; Walker DB J Am Chem Soc; 2007 Oct; 129(39):11950-63. PubMed ID: 17845039 [TBL] [Abstract][Full Text] [Related]
10. Toward a Molecular Lego Approach for the Diversity-Oriented Synthesis of Cyclodextrin Analogues Designed as Scaffolds for Multivalent Systems. Lepage ML; Schneider JP; Bodlenner A; Compain P J Org Chem; 2015 Nov; 80(21):10719-33. PubMed ID: 26439895 [TBL] [Abstract][Full Text] [Related]
12. Synthesis of Carbohydrate Based Macrolactones and Their Applications as Receptors for Ion Recognition and Catalysis. Adhikari SB; Chen A; Wang G Molecules; 2021 Jun; 26(11):. PubMed ID: 34205128 [TBL] [Abstract][Full Text] [Related]
13. Solvent-free copper-catalyzed azide-alkyne cycloaddition under mechanochemical activation. Rinaldi L; Martina K; Baricco F; Rotolo L; Cravotto G Molecules; 2015 Feb; 20(2):2837-49. PubMed ID: 25671367 [TBL] [Abstract][Full Text] [Related]
14. On the Mechanism of Copper(I)-Catalyzed Azide-Alkyne Cycloaddition. Zhu L; Brassard CJ; Zhang X; Guha PM; Clark RJ Chem Rec; 2016 Jun; 16(3):1501-17. PubMed ID: 27216993 [TBL] [Abstract][Full Text] [Related]
15. A novel complexity-to-diversity strategy for the diversity-oriented synthesis of structurally diverse and complex macrocycles from quinine. Ciardiello JJ; Stewart HL; Sore HF; Galloway WRJD; Spring DR Bioorg Med Chem; 2017 Jun; 25(11):2825-2843. PubMed ID: 28283333 [TBL] [Abstract][Full Text] [Related]
16. Advances in Triazole Synthesis from Copper-catalyzed Azide-alkyne Cycloadditions (CuAAC) Based on Eco-friendly Procedures. de Souza MVN; da Costa CF; Facchinetti V; Gomes CRB; Pacheco PM Curr Org Synth; 2019; 16(2):244-257. PubMed ID: 31975674 [TBL] [Abstract][Full Text] [Related]
17. Synthesis of glycoconjugate mimics by 'click chemistry'. Thakur K; Khare NK Carbohydr Res; 2019 Oct; 484():107775. PubMed ID: 31430604 [TBL] [Abstract][Full Text] [Related]
18. Non-nucleoside building blocks for copper-assisted and copper-free click chemistry for the efficient synthesis of RNA conjugates. Jayaprakash KN; Peng CG; Butler D; Varghese JP; Maier MA; Rajeev KG; Manoharan M Org Lett; 2010 Dec; 12(23):5410-3. PubMed ID: 21049912 [TBL] [Abstract][Full Text] [Related]
19. Metal chelating systems synthesized using the copper(I) catalyzed azide-alkyne cycloaddition. Struthers H; Mindt TL; Schibli R Dalton Trans; 2010 Jan; 39(3):675-96. PubMed ID: 20066208 [TBL] [Abstract][Full Text] [Related]
20. Supramolecular chemistry of pillar[n]arenes functionalised by a copper(i)-catalysed alkyne-azide cycloaddition "click" reaction. Kakuta T; Yamagishi T; Ogoshi T Chem Commun (Camb); 2017 May; 53(38):5250-5266. PubMed ID: 28387405 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]