These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
315 related articles for article (PubMed ID: 28685326)
1. Ferruginous compounds in the airborne particulate matter of the metropolitan area of Belo Horizonte, Minas Gerais, Brazil. Tavares FVF; Ardisson JD; Rodrigues PCH; Fabris JD; Fernandez-Outon LE; Feliciano VMD Environ Sci Pollut Res Int; 2017 Aug; 24(24):19683-19692. PubMed ID: 28685326 [TBL] [Abstract][Full Text] [Related]
2. Determination of settled dust sources by analytical techniques and chemical mass balance receptor model. da Costa JG; de Albuquerque AS; Ardisson JD; Fernandez-Outon LE; de Queiroz RS; Morimoto T Environ Sci Pollut Res Int; 2023 Feb; 30(7):17926-17941. PubMed ID: 36205862 [TBL] [Abstract][Full Text] [Related]
3. Resonant Synchrotron X-ray Diffraction determines markers for iron-rich atmospheric particulate matter in urban region. Galvão ES; Santos JM; Lima AT; Reis NC; Stuetz RM; Orlando MTD Chemosphere; 2018 Dec; 212():418-428. PubMed ID: 30149315 [TBL] [Abstract][Full Text] [Related]
4. First assessment of atmospheric pollution by trace elements and particulate matter after a severe collapse of a tailings dam, Minas Gerais, Brazil: An insight into biomonitoring with Tillandsia usneoides and a public health dataset. Parente CET; Carvalho GO; Lino AS; Sabagh LT; Azeredo A; Freitas DFS; Ramos VS; Teixeira C; Meire RO; Ferreira Filho VJM; Malm O Environ Res; 2023 Sep; 233():116435. PubMed ID: 37331556 [TBL] [Abstract][Full Text] [Related]
5. Identifying regional soil as the potential source of PM Ghosal S; Wall S Environ Pollut; 2019 Oct; 253():181-189. PubMed ID: 31306825 [TBL] [Abstract][Full Text] [Related]
6. Oxidative potential (OP) and mineralogy of iron ore particulate matter at the Gol-E-Gohar Mining and Industrial Facility (Iran). Soltani N; Keshavarzi B; Sorooshian A; Moore F; Dunster C; Dominguez AO; Kelly FJ; Dhakal P; Ahmadi MR; Asadi S Environ Geochem Health; 2018 Oct; 40(5):1785-1802. PubMed ID: 28281141 [TBL] [Abstract][Full Text] [Related]
7. Characterisation and source identification of the total airborne particulate matter collected in an urban area of Aracaju, Northeast, Brazil. Almeida TS; Sant Ana MO; Cruz JM; Tormen L; Frescura Bascuñan VLA; Azevedo PA; Garcia CAB; Alves JDPH; Araujo RGO Environ Pollut; 2017 Jul; 226():444-451. PubMed ID: 28457733 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of atmospheric particulate matter from an industrial area in Southeast Brazil. Mimura AMS; Ferreira CCM; Silva JCJ Environ Monit Assess; 2020 Nov; 192(12):765. PubMed ID: 33201334 [TBL] [Abstract][Full Text] [Related]
9. Influence of source distribution and geochemical composition of aerosols on children exposure in the large polymetallic mining region of the Bolivian Altiplano. Goix S; Point D; Oliva P; Polve M; Duprey JL; Mazurek H; Guislain L; Huayta C; Barbieri FL; Gardon J Sci Total Environ; 2011 Dec; 412-413():170-84. PubMed ID: 22044583 [TBL] [Abstract][Full Text] [Related]
10. Assessment of the natural sources of particulate matter on the opencast mines air quality. Huertas JI; Huertas ME; Cervantes G; Díaz J Sci Total Environ; 2014 Sep; 493():1047-55. PubMed ID: 25016110 [TBL] [Abstract][Full Text] [Related]
11. Characteristics and chemical compositions of particulate matter collected at the selected metro stations of Shanghai, China. Guo L; Hu Y; Hu Q; Lin J; Li C; Chen J; Li L; Fu H Sci Total Environ; 2014 Oct; 496():443-452. PubMed ID: 25105755 [TBL] [Abstract][Full Text] [Related]
12. Source identification and apportionment of PM2.5 and PM2.5-10 in iron and steel scrap smelting factory environment using PMF, PCFA and UNMIX receptor models. Ogundele LT; Owoade OK; Olise FS; Hopke PK Environ Monit Assess; 2016 Oct; 188(10):574. PubMed ID: 27645143 [TBL] [Abstract][Full Text] [Related]
13. Uncommon chemical species in PM Galvão ES; D'Azeredo Orlando MT; Santos JM; Lima AT Chemosphere; 2020 Feb; 240():124953. PubMed ID: 31574435 [TBL] [Abstract][Full Text] [Related]
14. Trace elements in particulate matter from metropolitan regions of Northern China: Sources, concentrations and size distributions. Pan Y; Tian S; Li X; Sun Y; Li Y; Wentworth GR; Wang Y Sci Total Environ; 2015 Dec; 537():9-22. PubMed ID: 26278373 [TBL] [Abstract][Full Text] [Related]
15. Source apportionment of settleable particles in an impacted urban and industrialized region in Brazil. Santos JM; Reis NC; Galvão ES; Silveira A; Goulart EV; Lima AT Environ Sci Pollut Res Int; 2017 Sep; 24(27):22026-22039. PubMed ID: 28785946 [TBL] [Abstract][Full Text] [Related]
16. Analysis of airborne and waterborne particles around a taconite ore processing facility. Axten CW; Foster D Regul Toxicol Pharmacol; 2008 Oct; 52(1 Suppl):S66-72. PubMed ID: 18221826 [TBL] [Abstract][Full Text] [Related]
17. A new look at inhalable metalliferous airborne particles on rail subway platforms. Moreno T; Martins V; Querol X; Jones T; BéruBé K; Minguillón MC; Amato F; Capdevila M; de Miguel E; Centelles S; Gibbons W Sci Total Environ; 2015 Feb; 505():367-75. PubMed ID: 25461038 [TBL] [Abstract][Full Text] [Related]
18. Study of polycyclic aromatic hydrocarbons in atmospheric particulate matter of an urban area with iron and steel mills. Menezes HC; Cardeal ZL Environ Toxicol Chem; 2012 Jul; 31(7):1470-7. PubMed ID: 22513457 [TBL] [Abstract][Full Text] [Related]
19. Analysis of crystalline phases in airborne particulate matter by two-dimensional X-ray diffraction (XRD2). Bontempi E; Benedetti D; Zacco A; Pantos E; Boniotti S; Saletti C; Apostoli P; Depero LE J Environ Monit; 2008 Jan; 10(1):82-8. PubMed ID: 18175020 [TBL] [Abstract][Full Text] [Related]
20. The Mössbauer study of atmospheric iron-containing aerosol in the coarse and PM2.5 fractions measured in rural site. Kopcewicz B; Kopcewicz M; Pietruczuk A Chemosphere; 2015 Jul; 131():9-16. PubMed ID: 25765259 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]