These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 28685424)

  • 41. Properties of membranes derived from the total lipids extracted from clear and cataractous lenses of 61-70-year-old human donors.
    Mainali L; Raguz M; O'Brien WJ; Subczynski WK
    Eur Biophys J; 2015 Feb; 44(1-2):91-102. PubMed ID: 25502634
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Oxygen permeation profile in lipid membranes: comparison with transmembrane polarity profile.
    Dzikovski BG; Livshits VA; Marsh D
    Biophys J; 2003 Aug; 85(2):1005-12. PubMed ID: 12885647
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Saturation-recovery electron paramagnetic resonance discrimination by oxygen transport (DOT) method for characterizing membrane domains.
    Subczynski WK; Widomska J; Wisniewska A; Kusumi A
    Methods Mol Biol; 2007; 398():143-57. PubMed ID: 18214379
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Influence of Cholesterol on the Oxygen Permeability of Membranes: Insight from Atomistic Simulations.
    Dotson RJ; Smith CR; Bueche K; Angles G; Pias SC
    Biophys J; 2017 Jun; 112(11):2336-2347. PubMed ID: 28591606
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Membrane elasticity modulated by cholesterol in model of porcine eye lens-lipid membrane.
    Khadka NK; Mortimer MF; Marosvari M; Timsina R; Mainali L
    Exp Eye Res; 2022 Jul; 220():109131. PubMed ID: 35636489
    [TBL] [Abstract][Full Text] [Related]  

  • 46. EPR linewidth (T2) method to measure oxygen permeability of phospholipid bilayers and its use to study the effect of low ethanol concentrations.
    Smirnov AI; Clarkson RB; Belford RL
    J Magn Reson B; 1996 May; 111(2):149-57. PubMed ID: 8661272
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Direct evidence for cholesterol crystalline domains in biological membranes: role in human pathobiology.
    Preston Mason R; Tulenko TN; Jacob RF
    Biochim Biophys Acta; 2003 Mar; 1610(2):198-207. PubMed ID: 12648774
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Use of electron paramagnetic resonance spectroscopy spin labels in studying the properties of biological membranes].
    Pogády J; Martisová D; Ondrias K; Stasko A; Reguli J
    Bratisl Lek Listy; 1989 Nov; 90(11):801-13. PubMed ID: 2557135
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Tethered bilayer lipid membranes (tBLMs): interest and applications for biological membrane investigations.
    Rebaud S; Maniti O; Girard-Egrot AP
    Biochimie; 2014 Dec; 107 Pt A():135-42. PubMed ID: 24998327
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The distribution of lipid attached spin probes in bilayers: application to membrane protein topology.
    Vogel A; Scheidt HA; Huster D
    Biophys J; 2003 Sep; 85(3):1691-701. PubMed ID: 12944284
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Permeability of lipid membranes revised in relation to freeze-thaw processes.
    Biondi AC; Senisterra GA; Disalvo EA
    Cryobiology; 1992 Jun; 29(3):323-31. PubMed ID: 1499317
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Lens membranes III. Freeze fracture morphology and composition of bovine lens fibre membranes in relation to ageing.
    Broekhuyse RM; Kuhlmann ED; Bijvelt J; Verkleij AJ; Ververgaert PH
    Exp Eye Res; 1978 Feb; 26(2):147-56. PubMed ID: 631231
    [No Abstract]   [Full Text] [Related]  

  • 53. Oxygen permeability of phosphatidylcholine--cholesterol membranes.
    Subczynski WK; Hyde JS; Kusumi A
    Proc Natl Acad Sci U S A; 1989 Jun; 86(12):4474-8. PubMed ID: 2543978
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Direct evidence for immiscible cholesterol domains in human ocular lens fiber cell plasma membranes.
    Jacob RF; Cenedella RJ; Mason RP
    J Biol Chem; 1999 Oct; 274(44):31613-8. PubMed ID: 10531368
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Reduced Oxygen Permeability upon Protein Incorporation Within Phospholipid Bilayers.
    Dotson RJ; Pias SC
    Adv Exp Med Biol; 2018; 1072():405-411. PubMed ID: 30178379
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Magnification of Cholesterol-Induced Membrane Resistance on the Tissue Level: Implications for Hypoxia.
    Shea R; Smith C; Pias SC
    Adv Exp Med Biol; 2016; 923():43-50. PubMed ID: 27526123
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cholesterol prevents interaction of the cell-penetrating peptide transportan with model lipid membranes.
    Arsov Z; Nemec M; Schara M; Johansson H; Langel U; Zorko M
    J Pept Sci; 2008 Dec; 14(12):1303-8. PubMed ID: 18683276
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Domain formation in the plasma membrane: roles of nonequilibrium lipid transport and membrane proteins.
    Fan J; Sammalkorpi M; Haataja M
    Phys Rev Lett; 2008 May; 100(17):178102. PubMed ID: 18518341
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Membrane-perturbing effect of fatty acids and lysolipids.
    Arouri A; Mouritsen OG
    Prog Lipid Res; 2013 Jan; 52(1):130-40. PubMed ID: 23117036
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Lipid-protein interactions in Escherichia coli membranes over-expressing the sugar-H(+) symporter, GalP EPR of spin-labelled lipids.
    Hubert A; Henderson PJ; Marsh D
    Biochim Biophys Acta; 2003 Apr; 1611(1-2):243-8. PubMed ID: 12659966
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.