These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 28685424)

  • 61. Lipid-protein interactions in membranes.
    Marsh D
    FEBS Lett; 1990 Aug; 268(2):371-5. PubMed ID: 2166692
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Is the mammalian cell plasma membrane a barrier to oxygen transport?
    Subczynski WK; Hopwood LE; Hyde JS
    J Gen Physiol; 1992 Jul; 100(1):69-87. PubMed ID: 1324973
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Intrinsic molecules in lipid membranes change the lipid-domain interfacial area: cholesterol at domain interfaces.
    Cruzeiro-Hansson L; Ipsen JH; Mouritsen OG
    Biochim Biophys Acta; 1989 Feb; 979(2):166-76. PubMed ID: 2647144
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Analysis of lipid peroxidation and electron microscopic survey of maturation stages during human cataractogenesis: pharmacokinetic assay of Can-C N-acetylcarnosine prodrug lubricant eye drops for cataract prevention.
    Babizhayev MA
    Drugs R D; 2005; 6(6):345-69. PubMed ID: 16274259
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The asymmetry of plasma membranes and their cholesterol content influence the uptake of cisplatin.
    Rivel T; Ramseyer C; Yesylevskyy S
    Sci Rep; 2019 Apr; 9(1):5627. PubMed ID: 30948733
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Cholesterol and other membrane active sterols: from membrane evolution to "rafts".
    Barenholz Y
    Prog Lipid Res; 2002 Jan; 41(1):1-5. PubMed ID: 11694266
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The structure and function of the Acholeplasma laidlawii plasma membrane.
    McElhaney RN
    Biochim Biophys Acta; 1984 Jan; 779(1):1-42. PubMed ID: 6318828
    [No Abstract]   [Full Text] [Related]  

  • 68. Physical properties of lipid bilayers from EPR spin labeling and their influence on chemical reactions in a membrane environment.
    Subczynski WK; Widomska J; Feix JB
    Free Radic Biol Med; 2009 Mar; 46(6):707-18. PubMed ID: 19111611
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Alterations of wheat root plasma membrane lipid composition induced by copper stress result in changed physicochemical properties of plasma membrane lipid vesicles.
    Berglund AH; Quartacci MF; Calucci L; Navari-Izzo F; Pinzino C; Liljenberg C
    Biochim Biophys Acta; 2002 Aug; 1564(2):466-72. PubMed ID: 12175930
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Hemin-induced lipid membrane disorder and increased permeability: a molecular model for the mechanism of cell lysis.
    Schmitt TH; Frezzatti WA; Schreier S
    Arch Biochem Biophys; 1993 Nov; 307(1):96-103. PubMed ID: 8239671
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Atomistic simulations modify interpretation of spin-label oximetry data. Part 1: intensified water-lipid interfacial resistances.
    Angles G; Hail A; Dotson RJ; Pias SC
    Appl Magn Reson; 2021 Oct; 52(10):1261-1289. PubMed ID: 37292189
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Diffusion of nitric oxide and oxygen in lipoproteins and membranes studied by pyrene fluorescence quenching.
    Möller MN; Denicola A
    Free Radic Biol Med; 2018 Nov; 128():137-143. PubMed ID: 29673655
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Globoside with spin-labelled fatty acid: bilayer lateral distribution and immune recognition.
    Mehlhorn IE; Barber KR; Grant CW
    Biochim Biophys Acta; 1988 Sep; 943(3):389-404. PubMed ID: 2843230
    [TBL] [Abstract][Full Text] [Related]  

  • 74. CO2 permeability of cell membranes is regulated by membrane cholesterol and protein gas channels.
    Itel F; Al-Samir S; Öberg F; Chami M; Kumar M; Supuran CT; Deen PM; Meier W; Hedfalk K; Gros G; Endeward V
    FASEB J; 2012 Dec; 26(12):5182-91. PubMed ID: 22964306
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Spin-labeling study of membranes in wheat embryo axes. 1. Partitioning of doxyl stearates into the lipid domains.
    Vishnyakova EA; Ruuge AE; Golovina EA; Hoekstra FA; Tikhonov AN
    Biochim Biophys Acta; 2000 Aug; 1467(2):380-94. PubMed ID: 11030596
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Infrared study of the structure and composition of rabbit lens membranes: a comparative analysis of the lipids of the nucleus, cortex and epithelium.
    Lamba OP; Borchman D; Garner WH
    Exp Eye Res; 1993 Jul; 57(1):1-12. PubMed ID: 8405165
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Simulations of simple Bovine and Homo sapiens outer cortex ocular lens membrane models with a majority concentration of cholesterol.
    Adams M; Wang E; Zhuang X; Klauda JB
    Biochim Biophys Acta Biomembr; 2018 Oct; 1860(10):2134-2144. PubMed ID: 29169746
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Characterization of cholesterol crystalline domains in model and biological membranes using X-ray diffraction.
    Mason RP; Jacob RF
    Adv Exp Med Biol; 2015; 842():231-45. PubMed ID: 25408347
    [No Abstract]   [Full Text] [Related]  

  • 79. Three-dimensional dynamic structure of the liquid-ordered domain in lipid membranes as examined by pulse-EPR oxygen probing.
    Subczynski WK; Wisniewska A; Hyde JS; Kusumi A
    Biophys J; 2007 Mar; 92(5):1573-84. PubMed ID: 17142270
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Membrane structural/functional perturbations induced by gossypol. Effects on membrane order, liposome permeability, and insulin-sensitive hexose transport.
    de Peyster A; Hyslop PA; Kuhn CE; Sauerheber RD
    Biochem Pharmacol; 1986 Oct; 35(19):3293-300. PubMed ID: 3533079
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.