BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 28685782)

  • 1. Magnetically manipulated droplet splitting on a 3D-printed device to carry out a complexometric assay.
    Hutama TJ; Oleschuk RD
    Lab Chip; 2017 Jul; 17(15):2640-2649. PubMed ID: 28685782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facile actuation of aqueous droplets on a superhydrophobic surface using magnetotactic bacteria for digital microfluidic applications.
    Rismani Yazdi S; Agrawal P; Morales E; Stevens CA; Oropeza L; Davies PL; Escobedo C; Oleschuk RD
    Anal Chim Acta; 2019 Nov; 1085():107-116. PubMed ID: 31522724
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A droplet-to-digital (D2D) microfluidic device for single cell assays.
    Shih SC; Gach PC; Sustarich J; Simmons BA; Adams PD; Singh S; Singh AK
    Lab Chip; 2015 Jan; 15(1):225-36. PubMed ID: 25354549
    [TBL] [Abstract][Full Text] [Related]  

  • 4. "Particle-Free" Magnetic Actuation of Droplets on Superhydrophobic Surfaces Using Dissolved Paramagnetic Salts.
    Mats L; Logue F; Oleschuk RD
    Anal Chem; 2016 Oct; 88(19):9486-9494. PubMed ID: 27605120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlled, synchronized actuation of microdroplets by gravity in a superhydrophobic, 3D-printed device.
    Oomen PE; Mulder JPSH; Verpoorte E; Oleschuk RD
    Anal Chim Acta; 2017 Oct; 988():50-57. PubMed ID: 28916103
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facile Actuation of Organic and Aqueous Droplets on Slippery Liquid-Infused Porous Surfaces for the Application of On-Chip Polymer Synthesis and Liquid-Liquid Extraction.
    Agrawal P; Salomons TT; Chiriac DS; Ross AC; Oleschuk RD
    ACS Appl Mater Interfaces; 2019 Aug; 11(31):28327-28335. PubMed ID: 31291086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An investigation into the kinematics of magnetically driven droplets on various (super)hydrophobic surfaces and their application to an automated multi-droplet platform.
    Agrawal P; Bachus KJ; Carriere G; Grouse P; Oleschuk RD
    Anal Bioanal Chem; 2019 Aug; 411(21):5393-5403. PubMed ID: 30291386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A 3D microblade structure for precise and parallel droplet splitting on digital microfluidic chips.
    Dong C; Jia Y; Gao J; Chen T; Mak PI; Vai MI; Martins RP
    Lab Chip; 2017 Feb; 17(5):896-904. PubMed ID: 28194461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bidirectional Droplet Manipulation on Magnetically Actuated Superhydrophobic Ratchet Surfaces.
    Son C; Yang Z; Kim S; Ferreira PM; Feng J; Kim S
    ACS Nano; 2023 Dec; 17(23):23702-23713. PubMed ID: 37856876
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On-demand acoustic droplet splitting and steering in a disposable microfluidic chip.
    Park J; Jung JH; Park K; Destgeer G; Ahmed H; Ahmad R; Sung HJ
    Lab Chip; 2018 Jan; 18(3):422-432. PubMed ID: 29220055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Motorized actuation system to perform droplet operations on printed plastic sheets.
    Kong T; Brien R; Njus Z; Kalwa U; Pandey S
    Lab Chip; 2016 May; 16(10):1861-72. PubMed ID: 27080172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-sided continuous optoelectrowetting (SCOEW) for droplet manipulation with light patterns.
    Park SY; Teitell MA; Chiou EP
    Lab Chip; 2010 Jul; 10(13):1655-61. PubMed ID: 20448870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple splitting of droplets using multi-furcating microfluidic channels.
    Li Z; Li L; Liao M; He L; Wu P
    Biomicrofluidics; 2019 Mar; 13(2):024112. PubMed ID: 31065311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Easy route to superhydrophobic copper-based wire-guided droplet microfluidic systems.
    Mumm F; van Helvoort AT; Sikorski P
    ACS Nano; 2009 Sep; 3(9):2647-52. PubMed ID: 19681579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Planar microfluidic drop splitting and merging.
    Collignon S; Friend J; Yeo L
    Lab Chip; 2015 Apr; 15(8):1942-51. PubMed ID: 25738425
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-precision digital droplet pipetting enabled by a plug-and-play microfluidic pipetting chip.
    Mao Y; Pan Y; Li X; Li B; Chu J; Pan T
    Lab Chip; 2018 Sep; 18(18):2720-2729. PubMed ID: 30014071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetic Janus origami robot for cross-scale droplet omni-manipulation.
    Jiang S; Li B; Zhao J; Wu D; Zhang Y; Zhao Z; Zhang Y; Yu H; Shao K; Zhang C; Li R; Chen C; Shen Z; Hu J; Dong B; Zhu L; Li J; Wang L; Chu J; Hu Y
    Nat Commun; 2023 Sep; 14(1):5455. PubMed ID: 37673871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Droplet-based microfluidic washing module for magnetic particle-based assays.
    Lee H; Xu L; Oh KW
    Biomicrofluidics; 2014 Jul; 8(4):044113. PubMed ID: 25379098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Liquid DEP actuation and precision dispensing of variable volume droplets.
    Prakash R; Paul R; Kaler KV
    Lab Chip; 2010 Nov; 10(22):3094-102. PubMed ID: 20862436
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interdroplet bilayer arrays in millifluidic droplet traps from 3D-printed moulds.
    King PH; Jones G; Morgan H; de Planque MR; Zauner KP
    Lab Chip; 2014 Feb; 14(4):722-9. PubMed ID: 24336841
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.