These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 28686160)

  • 1. The cyanobacterial circadian clock follows midday in vivo and in vitro.
    Leypunskiy E; Lin J; Yoo H; Lee U; Dinner AR; Rust MJ
    Elife; 2017 Jul; 6():. PubMed ID: 28686160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure, function, and mechanism of the core circadian clock in cyanobacteria.
    Swan JA; Golden SS; LiWang A; Partch CL
    J Biol Chem; 2018 Apr; 293(14):5026-5034. PubMed ID: 29440392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The inner workings of an ancient biological clock.
    Fang M; LiWang A; Golden SS; Partch CL
    Trends Biochem Sci; 2024 Mar; 49(3):236-246. PubMed ID: 38185606
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The cyanobacterial clock and metabolism.
    Pattanayak G; Rust MJ
    Curr Opin Microbiol; 2014 Apr; 18():90-5. PubMed ID: 24667330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidized quinones signal onset of darkness directly to the cyanobacterial circadian oscillator.
    Kim YI; Vinyard DJ; Ananyev GM; Dismukes GC; Golden SS
    Proc Natl Acad Sci U S A; 2012 Oct; 109(44):17765-9. PubMed ID: 23071342
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide fitness assessment during diurnal growth reveals an expanded role of the cyanobacterial circadian clock protein KaiA.
    Welkie DG; Rubin BE; Chang YG; Diamond S; Rifkin SA; LiWang A; Golden SS
    Proc Natl Acad Sci U S A; 2018 Jul; 115(30):E7174-E7183. PubMed ID: 29991601
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Timing the day: what makes bacterial clocks tick?
    Johnson CH; Zhao C; Xu Y; Mori T
    Nat Rev Microbiol; 2017 Apr; 15(4):232-242. PubMed ID: 28216658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Minimal tool set for a prokaryotic circadian clock.
    Schmelling NM; Lehmann R; Chaudhury P; Beck C; Albers SV; Axmann IM; Wiegard A
    BMC Evol Biol; 2017 Jul; 17(1):169. PubMed ID: 28732467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diversity of KaiC-based timing systems in marine Cyanobacteria.
    Axmann IM; Hertel S; Wiegard A; Dörrich AK; Wilde A
    Mar Genomics; 2014 Apr; 14():3-16. PubMed ID: 24388874
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Light-driven changes in energy metabolism directly entrain the cyanobacterial circadian oscillator.
    Rust MJ; Golden SS; O'Shea EK
    Science; 2011 Jan; 331(6014):220-3. PubMed ID: 21233390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stability of the Synechococcus elongatus PCC 7942 circadian clock under directed anti-phase expression of the kai genes.
    Ditty JL; Canales SR; Anderson BE; Williams SB; Golden SS
    Microbiology (Reading); 2005 Aug; 151(Pt 8):2605-2613. PubMed ID: 16079339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systems-level characterization of the kernel mechanism of the cyanobacterial circadian oscillator.
    Ma L; Ranganathan R
    Biosystems; 2014 Mar; 117():30-9. PubMed ID: 24444761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The itty-bitty time machine genetics of the cyanobacterial circadian clock.
    Mackey SR; Golden SS; Ditty JL
    Adv Genet; 2011; 74():13-53. PubMed ID: 21924974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The roles of the dimeric and tetrameric structures of the clock protein KaiB in the generation of circadian oscillations in cyanobacteria.
    Murakami R; Mutoh R; Iwase R; Furukawa Y; Imada K; Onai K; Morishita M; Yasui S; Ishii K; Valencia Swain JO; Uzumaki T; Namba K; Ishiura M
    J Biol Chem; 2012 Aug; 287(35):29506-15. PubMed ID: 22722936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rhythms in energy storage control the ability of the cyanobacterial circadian clock to reset.
    Pattanayak GK; Phong C; Rust MJ
    Curr Biol; 2014 Aug; 24(16):1934-8. PubMed ID: 25127221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptional autoregulation by phosphorylated and non-phosphorylated KaiC in cyanobacterial circadian rhythms.
    Takigawa-Imamura H; Mochizuki A
    J Theor Biol; 2006 Jul; 241(2):178-92. PubMed ID: 16387328
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A mathematical model for the Kai-protein-based chemical oscillator and clock gene expression rhythms in cyanobacteria.
    Miyoshi F; Nakayama Y; Kaizu K; Iwasaki H; Tomita M
    J Biol Rhythms; 2007 Feb; 22(1):69-80. PubMed ID: 17229926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Costs of Clock-Environment Misalignment in Individual Cyanobacterial Cells.
    Lambert G; Chew J; Rust MJ
    Biophys J; 2016 Aug; 111(4):883-891. PubMed ID: 27558731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantifying the rhythm of KaiB-C interaction for in vitro cyanobacterial circadian clock.
    Ma L; Ranganathan R
    PLoS One; 2012; 7(8):e42581. PubMed ID: 22900029
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Wiegard A; Köbler C; Oyama K; Dörrich AK; Azai C; Terauchi K; Wilde A; Axmann IM
    J Bacteriol; 2020 Jan; 202(4):. PubMed ID: 31767776
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.