BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

362 related articles for article (PubMed ID: 28686415)

  • 1. High-Resolution Transfer Printing of Graphene Lines for Fully Printed, Flexible Electronics.
    Song D; Mahajan A; Secor EB; Hersam MC; Francis LF; Frisbie CD
    ACS Nano; 2017 Jul; 11(7):7431-7439. PubMed ID: 28686415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct Printing of Graphene Electrodes for High-Performance Organic Inverters.
    Naik AR; Kim JJ; Usluer Ö; Gonzalez Arellano DL; Secor EB; Facchetti A; Hersam MC; Briseno AL; Watkins JJ
    ACS Appl Mater Interfaces; 2018 May; 10(18):15988-15995. PubMed ID: 29667396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transfer Printing of Sub-5 μm Graphene Electrodes for Flexible Microsupercapacitors.
    Song D; Secor EB; Wang Y; Hersam MC; Frisbie CD
    ACS Appl Mater Interfaces; 2018 Jul; 10(26):22303-22310. PubMed ID: 29894146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Screen-Printing of a Highly Conductive Graphene Ink for Flexible Printed Electronics.
    He P; Cao J; Ding H; Liu C; Neilson J; Li Z; Kinloch IA; Derby B
    ACS Appl Mater Interfaces; 2019 Sep; 11(35):32225-32234. PubMed ID: 31390171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gravure printing of graphene for large-area flexible electronics.
    Secor EB; Lim S; Zhang H; Frisbie CD; Francis LF; Hersam MC
    Adv Mater; 2014 Jul; 26(26):4533-8. PubMed ID: 24782064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graphene inks for printed flexible electronics: Graphene dispersions, ink formulations, printing techniques and applications.
    Tran TS; Dutta NK; Choudhury NR
    Adv Colloid Interface Sci; 2018 Nov; 261():41-61. PubMed ID: 30318342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly conductive graphene/carbon black screen printing inks for flexible electronics.
    Liu L; Shen Z; Zhang X; Ma H
    J Colloid Interface Sci; 2021 Jan; 582(Pt A):12-21. PubMed ID: 32814220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphology and electrical properties of high-speed flexography-printed graphene.
    Tafoya RR; Gallegos MA; Downing JR; Gamba L; Kaehr B; Coker EN; Hersam MC; Secor EB
    Mikrochim Acta; 2022 Feb; 189(3):123. PubMed ID: 35226191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid and Versatile Photonic Annealing of Graphene Inks for Flexible Printed Electronics.
    Secor EB; Ahn BY; Gao TZ; Lewis JA; Hersam MC
    Adv Mater; 2015 Nov; 27(42):6683-8. PubMed ID: 26422363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-resolution patterning of graphene by screen printing with a silicon stencil for highly flexible printed electronics.
    Hyun WJ; Secor EB; Hersam MC; Frisbie CD; Francis LF
    Adv Mater; 2015 Jan; 27(1):109-15. PubMed ID: 25377870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Freestanding Ion Gels for Flexible, Printed, Multifunctional Microsupercapacitors.
    Song D; Zare Bidoky F; Secor EB; Hersam MC; Frisbie CD
    ACS Appl Mater Interfaces; 2019 Mar; 11(10):9947-9954. PubMed ID: 30758176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Resolution Graphene Films for Electrochemical Sensing via Inkjet Maskless Lithography.
    Hondred JA; Stromberg LR; Mosher CL; Claussen JC
    ACS Nano; 2017 Oct; 11(10):9836-9845. PubMed ID: 28930433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Performance Inkjet-Printed Indium-Gallium-Zinc-Oxide Transistors Enabled by Embedded, Chemically Stable Graphene Electrodes.
    Secor EB; Smith J; Marks TJ; Hersam MC
    ACS Appl Mater Interfaces; 2016 Jul; 8(27):17428-34. PubMed ID: 27327555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flexible Circuits and Soft Actuators by Printing Assembly of Graphene.
    Li W; Li F; Li H; Su M; Gao M; Li Y; Su D; Zhang X; Song Y
    ACS Appl Mater Interfaces; 2016 May; 8(19):12369-76. PubMed ID: 27124494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inkjet-Printed Electrodes on A4 Paper Substrates for Low-Cost, Disposable, and Flexible Asymmetric Supercapacitors.
    Sundriyal P; Bhattacharya S
    ACS Appl Mater Interfaces; 2017 Nov; 9(44):38507-38521. PubMed ID: 28991438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gravure Printing of Water-based Silver Nanowire ink on Plastic Substrate for Flexible Electronics.
    Huang Q; Zhu Y
    Sci Rep; 2018 Oct; 8(1):15167. PubMed ID: 30310117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. UV Curable Conductive Ink for the Fabrication of Textile-Based Conductive Circuits and Wearable UHF RFID Tags.
    Hong H; Hu J; Yan X
    ACS Appl Mater Interfaces; 2019 Jul; 11(30):27318-27326. PubMed ID: 31284718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Screen printing as a scalable and low-cost approach for rigid and flexible thin-film transistors using separated carbon nanotubes.
    Cao X; Chen H; Gu X; Liu B; Wang W; Cao Y; Wu F; Zhou C
    ACS Nano; 2014 Dec; 8(12):12769-76. PubMed ID: 25497107
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Versatile Molecular Silver Ink Platform for Printed Flexible Electronics.
    Kell AJ; Paquet C; Mozenson O; Djavani-Tabrizi I; Deore B; Liu X; Lopinski GP; James R; Hettak K; Shaker J; Momciu A; Ferrigno J; Ferrand O; Hu JX; Lafrenière S; Malenfant PRL
    ACS Appl Mater Interfaces; 2017 May; 9(20):17226-17237. PubMed ID: 28466636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Resolution and Large-Area Patterning of Highly Conductive Silver Nanowire Electrodes by Reverse Offset Printing and Intense Pulsed Light Irradiation.
    Park K; Woo K; Kim J; Lee D; Ahn Y; Song D; Kim H; Oh D; Kwon S; Lee Y
    ACS Appl Mater Interfaces; 2019 Apr; 11(16):14882-14891. PubMed ID: 30919616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.