These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

340 related articles for article (PubMed ID: 28687070)

  • 41. High-throughput single-cell gene-expression profiling with multiplexed error-robust fluorescence in situ hybridization.
    Moffitt JR; Hao J; Wang G; Chen KH; Babcock HP; Zhuang X
    Proc Natl Acad Sci U S A; 2016 Sep; 113(39):11046-51. PubMed ID: 27625426
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Identification of innate lymphoid cells in single-cell RNA-Seq data.
    Suffiotti M; Carmona SJ; Jandus C; Gfeller D
    Immunogenetics; 2017 Jul; 69(7):439-450. PubMed ID: 28534222
    [TBL] [Abstract][Full Text] [Related]  

  • 43. scNanoCOOL-seq: a long-read single-cell sequencing method for multi-omics profiling within individual cells.
    Lin J; Xue X; Wang Y; Zhou Y; Wu J; Xie H; Liu M; Wen L; Tang F
    Cell Res; 2023 Nov; 33(11):879-882. PubMed ID: 37700167
    [No Abstract]   [Full Text] [Related]  

  • 44. A cost-effective RNA sequencing protocol for large-scale gene expression studies.
    Hou Z; Jiang P; Swanson SA; Elwell AL; Nguyen BK; Bolin JM; Stewart R; Thomson JA
    Sci Rep; 2015 Apr; 5():9570. PubMed ID: 25831155
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Retinal transcriptome profiling by directional next-generation sequencing using 100 ng of total RNA.
    Brooks MJ; Rajasimha HK; Swaroop A
    Methods Mol Biol; 2012; 884():319-34. PubMed ID: 22688717
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Marrying microfluidics and microwells for parallel, high-throughput single-cell genomics.
    Wadsworth MH; Hughes TK; Shalek AK
    Genome Biol; 2015 Jun; 16(1):129. PubMed ID: 26087845
    [TBL] [Abstract][Full Text] [Related]  

  • 47. SCITO-seq: single-cell combinatorial indexed cytometry sequencing.
    Hwang B; Lee DS; Tamaki W; Sun Y; Ogorodnikov A; Hartoularos GC; Winters A; Yeung BZ; Nazor KL; Song YS; Chow ED; Spitzer MH; Ye CJ
    Nat Methods; 2021 Aug; 18(8):903-911. PubMed ID: 34354295
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Single-cell genome and transcriptome processing prior to high-throughput sequencing.
    Aransay AM; Barcena L; Gonzalez-Lahera A; Macias-Camara N
    Methods Mol Biol; 2015; 1293():83-114. PubMed ID: 26040683
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Single cell sequencing approaches for complex biological systems.
    Baslan T; Hicks J
    Curr Opin Genet Dev; 2014 Jun; 26():59-65. PubMed ID: 25016438
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Detection of high variability in gene expression from single-cell RNA-seq profiling.
    Chen HI; Jin Y; Huang Y; Chen Y
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):508. PubMed ID: 27556924
    [TBL] [Abstract][Full Text] [Related]  

  • 51. RNA-Seq methods for transcriptome analysis.
    Hrdlickova R; Toloue M; Tian B
    Wiley Interdiscip Rev RNA; 2017 Jan; 8(1):. PubMed ID: 27198714
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Navigating the Depths and Avoiding the Shallows of Pancreatic Islet Cell Transcriptomes.
    Mawla AM; Huising MO
    Diabetes; 2019 Jul; 68(7):1380-1393. PubMed ID: 31221802
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nuclear RNA Isolation and Sequencing.
    Dhaliwal NK; Mitchell JA
    Methods Mol Biol; 2016; 1402():63-71. PubMed ID: 26721484
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Single-Cell Transcriptome Profiling of Human Pancreatic Islets in Health and Type 2 Diabetes.
    Segerstolpe Å; Palasantza A; Eliasson P; Andersson EM; Andréasson AC; Sun X; Picelli S; Sabirsh A; Clausen M; Bjursell MK; Smith DM; Kasper M; Ämmälä C; Sandberg R
    Cell Metab; 2016 Oct; 24(4):593-607. PubMed ID: 27667667
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Quantitation of mRNA Transcripts and Proteins Using the BD Rhapsody™ Single-Cell Analysis System.
    Shum EY; Walczak EM; Chang C; Christina Fan H
    Adv Exp Med Biol; 2019; 1129():63-79. PubMed ID: 30968361
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Single-cell transcriptomes identify human islet cell signatures and reveal cell-type-specific expression changes in type 2 diabetes.
    Lawlor N; George J; Bolisetty M; Kursawe R; Sun L; Sivakamasundari V; Kycia I; Robson P; Stitzel ML
    Genome Res; 2017 Feb; 27(2):208-222. PubMed ID: 27864352
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Vertical flow array chips reliably identify cell types from single-cell mRNA sequencing experiments.
    Shirai M; Arikawa K; Taniguchi K; Tanabe M; Sakai T
    Sci Rep; 2016 Nov; 6():36014. PubMed ID: 27876759
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A Novel Approach to Single Cell RNA-Sequence Analysis Facilitates In Silico Gene Reporting of Human Pluripotent Stem Cell-Derived Retinal Cell Types.
    Phillips MJ; Jiang P; Howden S; Barney P; Min J; York NW; Chu LF; Capowski EE; Cash A; Jain S; Barlow K; Tabassum T; Stewart R; Pattnaik BR; Thomson JA; Gamm DM
    Stem Cells; 2018 Mar; 36(3):313-324. PubMed ID: 29230913
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Revealing cellular and molecular complexity of the central nervous system using single cell sequencing.
    Zeng Z; Miao N; Sun T
    Stem Cell Res Ther; 2018 Sep; 9(1):234. PubMed ID: 30213269
    [TBL] [Abstract][Full Text] [Related]  

  • 60. RNA Sequencing of Single Human Islet Cells Reveals Type 2 Diabetes Genes.
    Xin Y; Kim J; Okamoto H; Ni M; Wei Y; Adler C; Murphy AJ; Yancopoulos GD; Lin C; Gromada J
    Cell Metab; 2016 Oct; 24(4):608-615. PubMed ID: 27667665
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.