BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 28687338)

  • 1. Replicative DNA polymerase defects in human cancers: Consequences, mechanisms, and implications for therapy.
    Barbari SR; Shcherbakova PV
    DNA Repair (Amst); 2017 Aug; 56():16-25. PubMed ID: 28687338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional Analysis of Cancer-Associated DNA Polymerase ε Variants in
    Barbari SR; Kane DP; Moore EA; Shcherbakova PV
    G3 (Bethesda); 2018 Mar; 8(3):1019-1029. PubMed ID: 29352080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A panoply of errors: polymerase proofreading domain mutations in cancer.
    Rayner E; van Gool IC; Palles C; Kearsey SE; Bosse T; Tomlinson I; Church DN
    Nat Rev Cancer; 2016 Feb; 16(2):71-81. PubMed ID: 26822575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fidelity of DNA replication-a matter of proofreading.
    Bębenek A; Ziuzia-Graczyk I
    Curr Genet; 2018 Oct; 64(5):985-996. PubMed ID: 29500597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA polymerase epsilon and delta proofreading suppress discrete mutator and cancer phenotypes in mice.
    Albertson TM; Ogawa M; Bugni JM; Hays LE; Chen Y; Wang Y; Treuting PM; Heddle JA; Goldsby RE; Preston BD
    Proc Natl Acad Sci U S A; 2009 Oct; 106(40):17101-4. PubMed ID: 19805137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Replicative DNA polymerase δ but not ε proofreads errors in Cis and in Trans.
    Flood CL; Rodriguez GP; Bao G; Shockley AH; Kow YW; Crouse GF
    PLoS Genet; 2015 Mar; 11(3):e1005049. PubMed ID: 25742645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA polymerase ε and δ exonuclease domain mutations in endometrial cancer.
    Church DN; Briggs SE; Palles C; Domingo E; Kearsey SJ; Grimes JM; Gorman M; Martin L; Howarth KM; Hodgson SV; ; Kaur K; Taylor J; Tomlinson IP
    Hum Mol Genet; 2013 Jul; 22(14):2820-8. PubMed ID: 23528559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How asymmetric DNA replication achieves symmetrical fidelity.
    Zhou ZX; Lujan SA; Burkholder AB; St Charles J; Dahl J; Farrell CE; Williams JS; Kunkel TA
    Nat Struct Mol Biol; 2021 Dec; 28(12):1020-1028. PubMed ID: 34887558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Concurrent genetic alterations in DNA polymerase proofreading and mismatch repair in human colorectal cancer.
    Yoshida R; Miyashita K; Inoue M; Shimamoto A; Yan Z; Egashira A; Oki E; Kakeji Y; Oda S; Maehara Y
    Eur J Hum Genet; 2011 Mar; 19(3):320-5. PubMed ID: 21157497
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA polymerase 3'→5' exonuclease activity: Different roles of the beta hairpin structure in family-B DNA polymerases.
    Darmawan H; Harrison M; Reha-Krantz LJ
    DNA Repair (Amst); 2015 May; 29():36-46. PubMed ID: 25753811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantifying the contributions of base selectivity, proofreading and mismatch repair to nuclear DNA replication in Saccharomyces cerevisiae.
    St Charles JA; Liberti SE; Williams JS; Lujan SA; Kunkel TA
    DNA Repair (Amst); 2015 Jul; 31():41-51. PubMed ID: 25996407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A common cancer-associated DNA polymerase ε mutation causes an exceptionally strong mutator phenotype, indicating fidelity defects distinct from loss of proofreading.
    Kane DP; Shcherbakova PV
    Cancer Res; 2014 Apr; 74(7):1895-901. PubMed ID: 24525744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. POLD1: Central mediator of DNA replication and repair, and implication in cancer and other pathologies.
    Nicolas E; Golemis EA; Arora S
    Gene; 2016 Sep; 590(1):128-41. PubMed ID: 27320729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human DNA polymerase delta double-mutant D316A;E318A interferes with DNA mismatch repair in vitro.
    Liu D; Frederiksen JH; Liberti SE; Lützen A; Keijzers G; Pena-Diaz J; Rasmussen LJ
    Nucleic Acids Res; 2017 Sep; 45(16):9427-9440. PubMed ID: 28934474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for interplay among yeast replicative DNA polymerases alpha, delta and epsilon from studies of exonuclease and polymerase active site mutations.
    Pavlov YI; Maki S; Maki H; Kunkel TA
    BMC Biol; 2004 May; 2():11. PubMed ID: 15163346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mismatch repair and DNA polymerase δ proofreading prevent catastrophic accumulation of leading strand errors in cells expressing a cancer-associated DNA polymerase ϵ variant.
    Bulock CR; Xing X; Shcherbakova PV
    Nucleic Acids Res; 2020 Sep; 48(16):9124-9134. PubMed ID: 32756902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human mismatch repair system balances mutation rates between strands by removing more mismatches from the lagging strand.
    Andrianova MA; Bazykin GA; Nikolaev SI; Seplyarskiy VB
    Genome Res; 2017 Aug; 27(8):1336-1343. PubMed ID: 28512192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence from mutational specificity studies that yeast DNA polymerases delta and epsilon replicate different DNA strands at an intracellular replication fork.
    Karthikeyan R; Vonarx EJ; Straffon AF; Simon M; Faye G; Kunz BA
    J Mol Biol; 2000 Jun; 299(2):405-19. PubMed ID: 10860748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distinct mutational signatures characterize concurrent loss of polymerase proofreading and mismatch repair.
    Haradhvala NJ; Kim J; Maruvka YE; Polak P; Rosebrock D; Livitz D; Hess JM; Leshchiner I; Kamburov A; Mouw KW; Lawrence MS; Getz G
    Nat Commun; 2018 May; 9(1):1746. PubMed ID: 29717118
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Translesion synthesis in Escherichia coli: lessons from the NarI mutation hot spot.
    Fuchs RP; Fujii S
    DNA Repair (Amst); 2007 Jul; 6(7):1032-41. PubMed ID: 17403618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.