BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 28687429)

  • 1. Ecological effects of scrubber water discharge on coastal plankton: Potential synergistic effects of contaminants reduce survival and feeding of the copepod Acartia tonsa.
    Koski M; Stedmon C; Trapp S
    Mar Environ Res; 2017 Aug; 129():374-385. PubMed ID: 28687429
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impacts of exhaust gas cleaning systems (EGCS) discharge waters on planktonic biological indicators.
    Picone M; Russo M; Distefano GG; Baccichet M; Marchetto D; Volpi Ghirardini A; Lunde Hermansson A; Petrovic M; Gros M; Garcia E; Giubilato E; Calgaro L; Magnusson K; Granberg M; Marcomini A
    Mar Pollut Bull; 2023 May; 190():114846. PubMed ID: 36965268
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of concentration and size of suspended particles on the ingestion, reproduction and mortality rates of the copepod, Acartia tonsa.
    Sew G; Calbet A; Drillet G; Todd PA
    Mar Environ Res; 2018 Sep; 140():251-264. PubMed ID: 30042061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of seawater scrubbing on a microplanktonic community during a summer-bloom in the Baltic Sea.
    Ytreberg E; Karlberg M; Hassellöv IM; Hedblom M; Nylund AT; Salo K; Imberg H; Turner D; Tripp L; Yong J; Wulff A
    Environ Pollut; 2021 Dec; 291():118251. PubMed ID: 34592329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Environmental policy constraints for acidic exhaust gas scrubber discharges from ships.
    Ülpre H; Eames I
    Mar Pollut Bull; 2014 Nov; 88(1-2):292-301. PubMed ID: 25284442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toxicity of nickel in the marine calanoid copepod Acartia tonsa: Nickel chloride versus nanoparticles.
    Zhou C; Vitiello V; Casals E; Puntes VF; Iamunno F; Pellegrini D; Changwen W; Benvenuto G; Buttino I
    Aquat Toxicol; 2016 Jan; 170():1-12. PubMed ID: 26562184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of environmental conditions on the toxicokinetics of cadmium in the marine copepod Acartia tonsa.
    Pavlaki MD; Morgado RG; van Gestel CAM; Calado R; Soares AMVM; Loureiro S
    Ecotoxicol Environ Saf; 2017 Nov; 145():142-149. PubMed ID: 28732297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toxicity of ZnO nanoparticles to the copepod Acartia tonsa, exposed through a phytoplankton diet.
    Jarvis TA; Miller RJ; Lenihan HS; Bielmyer GK
    Environ Toxicol Chem; 2013 Jun; 32(6):1264-9. PubMed ID: 23417698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toxicity of silver, zinc, copper, and nickel to the copepod Acartia tonsa exposed via a phytoplankton diet.
    Bielmyer GK; Grosell M; Brixti KV
    Environ Sci Technol; 2006 Mar; 40(6):2063-8. PubMed ID: 16570637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of LAS on marine calanoid copepod population dynamics and potential reproduction.
    Christoffersen K; Hansen BW; Johansson LS; Krog E
    Aquat Toxicol; 2003 May; 63(4):405-16. PubMed ID: 12758005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of scrubber washwater discharge on microplankton in the Baltic Sea.
    Ytreberg E; Hassellöv IM; Nylund AT; Hedblom M; Al-Handal AY; Wulff A
    Mar Pollut Bull; 2019 Aug; 145():316-324. PubMed ID: 31590793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polyethylene microplastics increase the toxicity of chlorpyrifos to the marine copepod Acartia tonsa.
    Bellas J; Gil I
    Environ Pollut; 2020 May; 260():114059. PubMed ID: 32004970
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased tolerance to oil exposure by the cosmopolitan marine copepod Acartia tonsa.
    Krause KE; Dinh KV; Nielsen TG
    Sci Total Environ; 2017 Dec; 607-608():87-94. PubMed ID: 28688259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Larval development ratio test with the calanoid copepod Acartia tonsa as a new bioassay to assess marine sediment quality.
    Buttino I; Vitiello V; Macchia S; Scuderi A; Pellegrini D
    Ecotoxicol Environ Saf; 2018 Mar; 149():1-9. PubMed ID: 29145160
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of 2,4-dihydroxybenzophenone (BP1) on early life-stage development of the marine copepod Acartia tonsa at different temperatures and salinities.
    Kusk KO; Avdolli M; Wollenberger L
    Environ Toxicol Chem; 2011 Apr; 30(4):959-66. PubMed ID: 21194178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. De novo transcriptome assembly and differential gene expression analysis of the calanoid copepod Acartia tonsa exposed to nickel nanoparticles.
    Zhou C; Carotenuto Y; Vitiello V; Wu C; Zhang J; Buttino I
    Chemosphere; 2018 Oct; 209():163-172. PubMed ID: 29929122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of cypermethrin on marine plankton communities: a simulated field study using mesocosms.
    Medina M; Barata C; Telfer T; Baird DJ
    Ecotoxicol Environ Saf; 2004 Jun; 58(2):236-45. PubMed ID: 15157578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acute copper toxicity in the euryhaline copepod Acartia tonsa: implications for the development of an estuarine and marine biotic ligand model.
    Pinho GL; Bianchini A
    Environ Toxicol Chem; 2010 Aug; 29(8):1834-40. PubMed ID: 20821639
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cryptic ecological diversification of a planktonic estuarine copepod, Acartia tonsa.
    Chen G; Hare MP
    Mol Ecol; 2008 Mar; 17(6):1451-68. PubMed ID: 18248575
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toxic effects of ship exhaust gas closed-loop scrubber wash water.
    Ji Z; Yang Y; Zhu Y; Ling Y; Ren D; Zhang N; Huo Z
    Toxicol Ind Health; 2023 Sep; 39(9):491-503. PubMed ID: 37420335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.