These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 28687515)

  • 21. Pyocin sensitivity of Pseudomonas species.
    Jones LF; Thomas ET; Stinnett JD; Gilardi GL; Farmer JJ
    Appl Microbiol; 1974 Jan; 27(1):288-9. PubMed ID: 4203785
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A phage tail-like bacteriocin suppresses competitors in metapopulations of pathogenic bacteria.
    Backman T; Latorre SM; Symeonidi E; Muszyński A; Bleak E; Eads L; Martinez-Koury PI; Som S; Hawks A; Gloss AD; Belnap DM; Manuel AM; Deutschbauer AM; Bergelson J; Azadi P; Burbano HA; Karasov TL
    Science; 2024 Jun; 384(6701):eado0713. PubMed ID: 38870284
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biocontrol of avocado dematophora root rot by antagonistic Pseudomonas fluorescens PCL1606 correlates with the production of 2-hexyl 5-propyl resorcinol.
    Cazorla FM; Duckett SB; Bergström ET; Noreen S; Odijk R; Lugtenberg BJ; Thomas-Oates JE; Bloemberg GV
    Mol Plant Microbe Interact; 2006 Apr; 19(4):418-28. PubMed ID: 16610745
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ribosomally encoded antibacterial proteins and peptides from Pseudomonas.
    Ghequire MG; De Mot R
    FEMS Microbiol Rev; 2014 Jul; 38(4):523-68. PubMed ID: 24923764
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genus-specific distribution and pathovar-specific variation of the glycinecin R gene homologs in Xanthomonas genomes.
    Roh E; Heu S; Moon E
    J Microbiol; 2008 Dec; 46(6):681-6. PubMed ID: 19107397
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Live cell dynamics of production, explosive release and killing activity of phage tail-like weapons for Pseudomonas kin exclusion.
    Vacheron J; Heiman CM; Keel C
    Commun Biol; 2021 Jan; 4(1):87. PubMed ID: 33469108
    [TBL] [Abstract][Full Text] [Related]  

  • 27. (+)-(S)-dihydroaeruginoic acid, an inhibitor of Septoria tritici and other phytopathogenic fungi and bacteria, produced by Pseudomonas fluorescens.
    Carmi R; Carmeli S; Levy E; Gough FJ
    J Nat Prod; 1994 Sep; 57(9):1200-5. PubMed ID: 7798954
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fengycins From
    Medeot DB; Fernandez M; Morales GM; Jofré E
    Front Microbiol; 2019; 10():3107. PubMed ID: 32038550
    [No Abstract]   [Full Text] [Related]  

  • 29. Pantailocins: phage-derived bacteriocins from
    Stice SP; Jan H-H; Chen H-C; Nwosu L; Shin GY; Weaver S; Coutinho T; Kvitko BH; Baltrus DA
    Appl Environ Microbiol; 2023 Dec; 89(12):e0092923. PubMed ID: 37982620
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A genetically engineered Pseudomonas fluorescens strain possesses the dual activity against phytopathogenic fungi and insects.
    Lu W; Zhang W; Bai Y; Fu Y; Chen J; Geng X; Wang Y; Xiao M
    J Microbiol Biotechnol; 2010 Feb; 20(2):281-6. PubMed ID: 20208430
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In situ and real time investigation of the evolution of a Pseudomonas fluorescens nascent biofilm in the presence of an antimicrobial peptide.
    Quilès F; Saadi S; Francius G; Bacharouche J; Humbert F
    Biochim Biophys Acta; 2016 Jan; 1858(1):75-84. PubMed ID: 26525662
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phage tail-like particles are versatile bacterial nanomachines - A mini-review.
    Patz S; Becker Y; Richert-Pöggeler KR; Berger B; Ruppel S; Huson DH; Becker M
    J Adv Res; 2019 Sep; 19():75-84. PubMed ID: 31341672
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparative study of two bacteriocins produced by representative indigenous soil bacteria.
    Saleem F; Ahmad S; Yaqoob Z; Rasool SA
    Pak J Pharm Sci; 2009 Jul; 22(3):252-8. PubMed ID: 19553169
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bacteriocin production by Pediococcus pentosaceus isolated from marula (Scerocarya birrea).
    Todorov SD; Dicks LM
    Int J Food Microbiol; 2009 Jun; 132(2-3):117-26. PubMed ID: 19446352
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [THE SENSITIVITY OF PHYTOPATHOGENIC BACTERIA TO STREPTOMYCIN UNDER THE INFLUENCE OF PESTICIDES].
    Buletsa NM; Butsenko LM; Pasichnyk LA; Patyka VP
    Mikrobiol Z; 2015; 77(6):62-9. PubMed ID: 26829841
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of bioformulation and delivery system of Pseudomonas fluorescens against bacterial leaf blight of rice (Xanthomonas oryzae pv. oryzae).
    Jambhulkar PP; Sharma P
    J Environ Biol; 2014 Sep; 35(5):843-9. PubMed ID: 25204057
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Antibacterial activity of a bacteriocin-like substance produced by Bacillus sp. P34 that targets the bacterial cell envelope.
    Motta AS; Flores FS; Souto AA; Brandelli A
    Antonie Van Leeuwenhoek; 2008 Mar; 93(3):275-84. PubMed ID: 17906937
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ability of the marine bacterium Pseudomonas fluorescens BA3SM1 to counteract the toxicity of CdSe nanoparticles.
    Poirier I; Kuhn L; Demortière A; Mirvaux B; Hammann P; Chicher J; Caplat C; Pallud M; Bertrand M
    J Proteomics; 2016 Oct; 148():213-27. PubMed ID: 27523480
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Clinical microbiology of unusual Pseudomonas species.
    von Graevenitz A
    Prog Clin Pathol; 1973; 5():185-218. PubMed ID: 4205734
    [No Abstract]   [Full Text] [Related]  

  • 40. Systematic discovery of pseudomonad genetic factors involved in sensitivity to tailocins.
    Carim S; Azadeh AL; Kazakov AE; Price MN; Walian PJ; Lui LM; Nielsen TN; Chakraborty R; Deutschbauer AM; Mutalik VK; Arkin AP
    ISME J; 2021 Aug; 15(8):2289-2305. PubMed ID: 33649553
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.