These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 28687665)

  • 41. Modeling a disease-correlated tubulin mutation in budding yeast reveals insight into MAP-mediated dynein function.
    Denarier E; Ecklund KH; Berthier G; Favier A; O'Toole ET; Gory-Fauré S; De Macedo L; Delphin C; Andrieux A; Markus SM; Boscheron C
    Mol Biol Cell; 2021 Oct; 32(20):ar10. PubMed ID: 34379441
    [TBL] [Abstract][Full Text] [Related]  

  • 42. In vitro characterization of neurite extension using induced pluripotent stem cells derived from lissencephaly patients with TUBA1A missense mutations.
    Bamba Y; Shofuda T; Kato M; Pooh RK; Tateishi Y; Takanashi J; Utsunomiya H; Sumida M; Kanematsu D; Suemizu H; Higuchi Y; Akamatsu W; Gallagher D; Miller FD; Yamasaki M; Kanemura Y; Okano H
    Mol Brain; 2016 Jul; 9(1):70. PubMed ID: 27431206
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Par6alpha signaling controls glial-guided neuronal migration.
    Solecki DJ; Model L; Gaetz J; Kapoor TM; Hatten ME
    Nat Neurosci; 2004 Nov; 7(11):1195-203. PubMed ID: 15475953
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A pachygyria-causing alpha-tubulin mutation results in inefficient cycling with CCT and a deficient interaction with TBCB.
    Tian G; Kong XP; Jaglin XH; Chelly J; Keays D; Cowan NJ
    Mol Biol Cell; 2008 Mar; 19(3):1152-61. PubMed ID: 18199681
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Insights on the Role of α- and β-Tubulin Isotypes in Early Brain Development.
    Tantry MSA; Santhakumar K
    Mol Neurobiol; 2023 Jul; 60(7):3803-3823. PubMed ID: 36943622
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Refining the phenotype of alpha-1a Tubulin (TUBA1A) mutation in patients with classical lissencephaly.
    Morris-Rosendahl DJ; Najm J; Lachmeijer AM; Sztriha L; Martins M; Kuechler A; Haug V; Zeschnigk C; Martin P; Santos M; Vasconcelos C; Omran H; Kraus U; Van der Knaap MS; Schuierer G; Kutsche K; Uyanik G
    Clin Genet; 2008 Nov; 74(5):425-33. PubMed ID: 18954413
    [TBL] [Abstract][Full Text] [Related]  

  • 47. α-TubK40me3 is required for neuronal polarization and migration by promoting microtubule formation.
    Xie X; Wang S; Li M; Diao L; Pan X; Chen J; Zou W; Zhang X; Feng W; Bao L
    Nat Commun; 2021 Jul; 12(1):4113. PubMed ID: 34226540
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Serine 732 phosphorylation of FAK by Cdk5 is important for microtubule organization, nuclear movement, and neuronal migration.
    Xie Z; Sanada K; Samuels BA; Shih H; Tsai LH
    Cell; 2003 Aug; 114(4):469-82. PubMed ID: 12941275
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Structural differences between yeast and mammalian microtubules revealed by cryo-EM.
    Howes SC; Geyer EA; LaFrance B; Zhang R; Kellogg EH; Westermann S; Rice LM; Nogales E
    J Cell Biol; 2017 Sep; 216(9):2669-2677. PubMed ID: 28652389
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Human TUBB3 Mutations Disrupt Netrin Attractive Signaling.
    Huang H; Yang T; Shao Q; Majumder T; Mell K; Liu G
    Neuroscience; 2018 Mar; 374():155-171. PubMed ID: 29382549
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Refinement of cortical dysgeneses spectrum associated with TUBA1A mutations.
    Bahi-Buisson N; Poirier K; Boddaert N; Saillour Y; Castelnau L; Philip N; Buyse G; Villard L; Joriot S; Marret S; Bourgeois M; Van Esch H; Lagae L; Amiel J; Hertz-Pannier L; Roubertie A; Rivier F; Pinard JM; Beldjord C; Chelly J
    J Med Genet; 2008 Oct; 45(10):647-53. PubMed ID: 18728072
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Lissencephaly caused by a
    Ren S; Kong Y; Liu R; Li Q; Shen X; Kong QX
    Front Pediatr; 2024; 12():1367305. PubMed ID: 38813542
    [TBL] [Abstract][Full Text] [Related]  

  • 53. MicroTUB(B3)ules and brain development.
    Singh KK; Tsai LH
    Cell; 2010 Jan; 140(1):30-2. PubMed ID: 20085703
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Expression of unphosphorylated class III beta-tubulin isotype in neuroepithelial cells demonstrates neuroblast commitment and differentiation.
    Fanarraga ML; Avila J; Zabala JC
    Eur J Neurosci; 1999 Feb; 11(2):517-27. PubMed ID: 10073918
    [TBL] [Abstract][Full Text] [Related]  

  • 55. TUBA1A mutation-associated lissencephaly: case report and review of the literature.
    Sohal AP; Montgomery T; Mitra D; Ramesh V
    Pediatr Neurol; 2012 Feb; 46(2):127-31. PubMed ID: 22264709
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The newly identified migration inhibitory protein regulates the radial migration in the developing neocortex.
    Zhang S; Kanemitsu Y; Fujitani M; Yamashita T
    Sci Rep; 2014 Aug; 4():5984. PubMed ID: 25099998
    [TBL] [Abstract][Full Text] [Related]  

  • 57. TUBB4A mutations result in specific neuronal and oligodendrocytic defects that closely match clinically distinct phenotypes.
    Curiel J; Rodríguez Bey G; Takanohashi A; Bugiani M; Fu X; Wolf NI; Nmezi B; Schiffmann R; Bugaighis M; Pierson T; Helman G; Simons C; van der Knaap MS; Liu J; Padiath Q; Vanderver A
    Hum Mol Genet; 2017 Nov; 26(22):4506-4518. PubMed ID: 28973395
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mutations in alpha-tubulin cause abnormal neuronal migration in mice and lissencephaly in humans.
    Keays DA; Tian G; Poirier K; Huang GJ; Siebold C; Cleak J; Oliver PL; Fray M; Harvey RJ; Molnár Z; Piñon MC; Dear N; Valdar W; Brown SD; Davies KE; Rawlins JN; Cowan NJ; Nolan P; Chelly J; Flint J
    Cell; 2007 Jan; 128(1):45-57. PubMed ID: 17218254
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Codon modification of Tuba1a alters mRNA levels and causes a severe neurodevelopmental phenotype in mice.
    Leca I; Phillips AW; Ushakova L; Cushion TD; Keays DA
    Sci Rep; 2023 Jan; 13(1):1215. PubMed ID: 36681692
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The centrosome neither persistently leads migration nor determines the site of axonogenesis in migrating neurons in vivo.
    Distel M; Hocking JC; Volkmann K; Köster RW
    J Cell Biol; 2010 Nov; 191(4):875-90. PubMed ID: 21059852
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.