These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 28687791)

  • 1. Spectral Tuning Mechanism of Primate Blue-sensitive Visual Pigment Elucidated by FTIR Spectroscopy.
    Katayama K; Nonaka Y; Tsutsui K; Imai H; Kandori H
    Sci Rep; 2017 Jul; 7(1):4904. PubMed ID: 28687791
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein-bound water molecules in primate red- and green-sensitive visual pigments.
    Katayama K; Furutani Y; Imai H; Kandori H
    Biochemistry; 2012 Feb; 51(6):1126-33. PubMed ID: 22260165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identical Hydrogen-Bonding Strength of the Retinal Schiff Base between Primate Green- and Red-Sensitive Pigments: New Insight into Color Tuning Mechanism.
    Katayama K; Okitsu T; Imai H; Wada A; Kandori H
    J Phys Chem Lett; 2015 Apr; 6(7):1130-3. PubMed ID: 26262961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Color tuning in short wavelength-sensitive human and mouse visual pigments: ab initio quantum mechanics/molecular mechanics studies.
    Altun A; Yokoyama S; Morokuma K
    J Phys Chem A; 2009 Oct; 113(43):11685-92. PubMed ID: 19630373
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The pKa of the protonated Schiff bases of gecko cone and octopus visual pigments.
    Liang J; Steinberg G; Livnah N; Sheves M; Ebrey TG; Tsuda M
    Biophys J; 1994 Aug; 67(2):848-54. PubMed ID: 7948697
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tertiary structure and spectral tuning of UV and violet pigments in vertebrates.
    Yokoyama S; Starmer WT; Takahashi Y; Tada T
    Gene; 2006 Jan; 365():95-103. PubMed ID: 16343816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Early Proton Transfer Reaction in a Primate Blue-Sensitive Visual Pigment.
    Mizuno Y; Katayama K; Imai H; Kandori H
    Biochemistry; 2022 Dec; 61(23):2698-2708. PubMed ID: 36399519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FTIR study of primate color visual pigments.
    Katayama K; Kandori H
    Biophysics (Nagoya-shi); 2015; 11():61-6. PubMed ID: 27493516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular basis of spectral tuning in the newt short wavelength sensitive visual pigment.
    Takahashi Y; Ebrey TG
    Biochemistry; 2003 May; 42(20):6025-34. PubMed ID: 12755604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unique Retinal Binding Pocket of Primate Blue-Sensitive Visual Pigment.
    Nonaka Y; Hanai S; Katayama K; Imai H; Kandori H
    Biochemistry; 2020 Jul; 59(28):2602-2607. PubMed ID: 32567852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural basis for unique color tuning mechanism in heliorhodopsin.
    Tanaka T; Singh M; Shihoya W; Yamashita K; Kandori H; Nureki O
    Biochem Biophys Res Commun; 2020 Dec; 533(3):262-267. PubMed ID: 32951839
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FTIR study of the retinal Schiff base and internal water molecules of proteorhodopsin.
    Ikeda D; Furutani Y; Kandori H
    Biochemistry; 2007 May; 46(18):5365-73. PubMed ID: 17428036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FTIR studies of the photoactivation processes in squid retinochrome.
    Furutani Y; Terakita A; Shichida Y; Kandori H
    Biochemistry; 2005 Jun; 44(22):7988-97. PubMed ID: 15924417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Halide binding by the D212N mutant of Bacteriorhodopsin affects hydrogen bonding of water in the active site.
    Shibata M; Yoshitsugu M; Mizuide N; Ihara K; Kandori H
    Biochemistry; 2007 Jun; 46(25):7525-35. PubMed ID: 17547422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of spectral tuning in blue cone visual pigments. Visible and raman spectroscopy of blue-shifted rhodopsin mutants.
    Lin SW; Kochendoerfer GG; Carroll KS; Wang D; Mathies RA; Sakmar TP
    J Biol Chem; 1998 Sep; 273(38):24583-91. PubMed ID: 9733753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FTIR spectroscopy of the K photointermediate of Neurospora rhodopsin: structural changes of the retinal, protein, and water molecules after photoisomerization.
    Furutani Y; Bezerra AG; Waschuk S; Sumii M; Brown LS; Kandori H
    Biochemistry; 2004 Aug; 43(30):9636-46. PubMed ID: 15274618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural changes of pharaonis phoborhodopsin upon photoisomerization of the retinal chromophore: infrared spectral comparison with bacteriorhodopsin.
    Kandori H; Shimono K; Sudo Y; Iwamoto M; Shichida Y; Kamo N
    Biochemistry; 2001 Aug; 40(31):9238-46. PubMed ID: 11478891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoisomerization efficiency in UV-absorbing visual pigments: protein-directed isomerization of an unprotonated retinal Schiff base.
    Tsutsui K; Imai H; Shichida Y
    Biochemistry; 2007 May; 46(21):6437-45. PubMed ID: 17474760
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fourier transform IR spectroscopy study for new insights into molecular properties and activation mechanisms of visual pigment rhodopsin.
    Vogel R; Siebert F
    Biopolymers; 2003; 72(3):133-48. PubMed ID: 12722110
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of phototransduction in short-wavelength cone visual pigments via the retinylidene Schiff base counterion.
    Babu KR; Dukkipati A; Birge RR; Knox BE
    Biochemistry; 2001 Nov; 40(46):13760-6. PubMed ID: 11705364
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.