These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
221 related articles for article (PubMed ID: 28687887)
1. Ratiometric fluorescent pH nanoprobes based on in situ assembling of fluorescence resonance energy transfer between fluorescent proteins. Yu H; Chen C; Cao X; Liu Y; Zhou S; Wang P Anal Bioanal Chem; 2017 Aug; 409(21):5073-5080. PubMed ID: 28687887 [TBL] [Abstract][Full Text] [Related]
2. Characterization of a spectrally diverse set of fluorescent proteins as FRET acceptors for mTurquoise2. Mastop M; Bindels DS; Shaner NC; Postma M; Gadella TWJ; Goedhart J Sci Rep; 2017 Sep; 7(1):11999. PubMed ID: 28931898 [TBL] [Abstract][Full Text] [Related]
3. Upconversion nanoparticle-mOrange protein FRET nanoprobes for self-ratiometric/ratiometric determination of intracellular pH, and single cell pH imaging. Ghosh S; Chang YF; Yang DM; Chattopadhyay S Biosens Bioelectron; 2020 May; 155():112115. PubMed ID: 32217331 [TBL] [Abstract][Full Text] [Related]
4. Design and fabrication of fluorescence resonance energy transfer-mediated fluorescent polymer nanoparticles for ratiometric sensing of lysosomal pH. Chen J; Tang Y; Wang H; Zhang P; Li Y; Jiang J J Colloid Interface Sci; 2016 Dec; 484():298-307. PubMed ID: 27632075 [TBL] [Abstract][Full Text] [Related]
6. Development of FRET-based dual-excitation ratiometric fluorescent pH probes and their photocaged derivatives. Yuan L; Lin W; Cao Z; Wang J; Chen B Chemistry; 2012 Jan; 18(4):1247-55. PubMed ID: 22213439 [TBL] [Abstract][Full Text] [Related]
7. FRET-based ratiometric detection system for mercury ions in water with polymeric particles as scaffolds. Ma C; Zeng F; Huang L; Wu S J Phys Chem B; 2011 Feb; 115(5):874-82. PubMed ID: 21250732 [TBL] [Abstract][Full Text] [Related]
8. Quantum dot-fluorescent protein FRET probes for sensing intracellular pH. Dennis AM; Rhee WJ; Sotto D; Dublin SN; Bao G ACS Nano; 2012 Apr; 6(4):2917-24. PubMed ID: 22443420 [TBL] [Abstract][Full Text] [Related]
9. pH sensitivity of FRET reporters based on cyan and yellow fluorescent proteins. Betolngar DB; Erard M; Pasquier H; Bousmah Y; Diop-Sy A; Guiot E; Vincent P; Mérola F Anal Bioanal Chem; 2015 May; 407(14):4183-93. PubMed ID: 25814274 [TBL] [Abstract][Full Text] [Related]
10. A Novel Water-soluble Ratiometric Fluorescent Probe Based on FRET for Sensing Lysosomal pH. Song GJ; Bai SY; Luo J; Cao XQ; Zhao BX J Fluoresc; 2016 Nov; 26(6):2079-2086. PubMed ID: 27530632 [TBL] [Abstract][Full Text] [Related]
11. DNA-directed assembly of supramolecular fluorescent protein energy transfer systems. Kukolka F; Schoeps O; Woggon U; Niemeyer CM Bioconjug Chem; 2007; 18(3):621-7. PubMed ID: 17378598 [TBL] [Abstract][Full Text] [Related]
12. Flow cytometric measurement of fluorescence (Förster) resonance energy transfer from cyan fluorescent protein to yellow fluorescent protein using single-laser excitation at 458 nm. He L; Bradrick TD; Karpova TS; Wu X; Fox MH; Fischer R; McNally JG; Knutson JR; Grammer AC; Lipsky PE Cytometry A; 2003 May; 53(1):39-54. PubMed ID: 12701131 [TBL] [Abstract][Full Text] [Related]
13. FRET Sensor for Erythrosine Dye Based on Organic Nanoparticles: Application to Analysis of Food Stuff. Mahajan PG; Bhopate DP; Kolekar GB; Patil SR J Fluoresc; 2016 Jul; 26(4):1467-78. PubMed ID: 27246163 [TBL] [Abstract][Full Text] [Related]
14. Lignosulfonate: A Convenient Fluorescence Resonance Energy Transfer Platform for the Construction of a Ratiometric Fluorescence pH-Sensing Probe. Xue Y; Wan Z; Ouyang X; Qiu X J Agric Food Chem; 2019 Jan; 67(4):1044-1051. PubMed ID: 30624925 [TBL] [Abstract][Full Text] [Related]
15. Through bond energy transfer: a convenient and universal strategy toward efficient ratiometric fluorescent probe for bioimaging applications. Gong YJ; Zhang XB; Zhang CC; Luo AL; Fu T; Tan W; Shen GL; Yu RQ Anal Chem; 2012 Dec; 84(24):10777-84. PubMed ID: 23171399 [TBL] [Abstract][Full Text] [Related]
16. A FRET based pH probe with a broad working range applicable to referenced ratiometric dual wavelength and luminescence lifetime read out. Meier RJ; Simbürger JM; Soukka T; Schäferling M Chem Commun (Camb); 2015 Apr; 51(28):6145-8. PubMed ID: 25747771 [TBL] [Abstract][Full Text] [Related]
17. CdS/TiO2-fluorescein isothiocyanate nanoparticles as fluorescence resonance energy transfer probe for the determination of trace alkaline phosphatase based on affinity adsorption assay. Liu JM; Lin LP; Jiao L; Cui ML; Wang XX; Zhang LH; Zheng ZY Talanta; 2012 Aug; 98():137-44. PubMed ID: 22939139 [TBL] [Abstract][Full Text] [Related]
18. Fluorescence resonance energy transfer (FRET)-based nanoarchitecture for monitoring deubiquitinating enzyme activity. Liang YY; Zhang J; Cui H; Shao ZS; Cheng C; Wang YB; Wang HS Chem Commun (Camb); 2020 Mar; 56(21):3183-3186. PubMed ID: 32067022 [TBL] [Abstract][Full Text] [Related]
19. A novel design method of ratiometric fluorescent probes based on fluorescence resonance energy transfer switching by spectral overlap integral. Takakusa H; Kikuchi K; Urano Y; Kojima H; Nagano T Chemistry; 2003 Apr; 9(7):1479-85. PubMed ID: 12658644 [TBL] [Abstract][Full Text] [Related]
20. Near-infrared fluorescent probes based on TBET and FRET rhodamine acceptors with different p Wang J; Xia S; Bi J; Zhang Y; Fang M; Luck RL; Zeng Y; Chen TH; Lee HM; Liu H J Mater Chem B; 2019 Jan; 7(2):198-209. PubMed ID: 31367383 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]