BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

384 related articles for article (PubMed ID: 28688039)

  • 1. Using human artificial chromosomes to study centromere assembly and function.
    Molina O; Kouprina N; Masumoto H; Larionov V; Earnshaw WC
    Chromosoma; 2017 Oct; 126(5):559-575. PubMed ID: 28688039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HACking the centromere chromatin code: insights from human artificial chromosomes.
    Bergmann JH; Martins NM; Larionov V; Masumoto H; Earnshaw WC
    Chromosome Res; 2012 Jul; 20(5):505-19. PubMed ID: 22825423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic and epigenetic regulation of centromeres: a look at HAC formation.
    Ohzeki J; Larionov V; Earnshaw WC; Masumoto H
    Chromosome Res; 2015 Feb; 23(1):87-103. PubMed ID: 25682171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Histone H3K9 and H4 Acetylations and Transcription Facilitate the Initial CENP-A
    Zhu J; Cheng KCL; Yuen KWY
    Epigenetics Chromatin; 2018 Apr; 11(1):16. PubMed ID: 29653589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation of a Synthetic Human Chromosome with Two Centromeric Domains for Advanced Epigenetic Engineering Studies.
    Pesenti E; Kouprina N; Liskovykh M; Aurich-Costa J; Larionov V; Masumoto H; Earnshaw WC; Molina O
    ACS Synth Biol; 2018 Apr; 7(4):1116-1130. PubMed ID: 29565577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human Artificial Chromosome with Regulated Centromere: A Tool for Genome and Cancer Studies.
    Kouprina N; Petrov N; Molina O; Liskovykh M; Pesenti E; Ohzeki JI; Masumoto H; Earnshaw WC; Larionov V
    ACS Synth Biol; 2018 Sep; 7(9):1974-1989. PubMed ID: 30075081
    [TBL] [Abstract][Full Text] [Related]  

  • 7. H3K9me3 maintenance on a human artificial chromosome is required for segregation but not centromere epigenetic memory.
    Martins NMC; Cisneros-Soberanis F; Pesenti E; Kochanova NY; Shang WH; Hori T; Nagase T; Kimura H; Larionov V; Masumoto H; Fukagawa T; Earnshaw WC
    J Cell Sci; 2020 Jul; 133(14):. PubMed ID: 32576667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human artificial chromosome: Chromatin assembly mechanisms and CENP-B.
    Ohzeki JI; Otake K; Masumoto H
    Exp Cell Res; 2020 Apr; 389(2):111900. PubMed ID: 32044309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CENP-A Is Dispensable for Mitotic Centromere Function after Initial Centromere/Kinetochore Assembly.
    Hoffmann S; Dumont M; Barra V; Ly P; Nechemia-Arbely Y; McMahon MA; Hervé S; Cleveland DW; Fachinetti D
    Cell Rep; 2016 Nov; 17(9):2394-2404. PubMed ID: 27880912
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of CENP-B and alpha-satellite DNA: de novo assembly and epigenetic maintenance of human centromeres.
    Masumoto H; Nakano M; Ohzeki J
    Chromosome Res; 2004; 12(6):543-56. PubMed ID: 15289662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epigenetic engineering shows H3K4me2 is required for HJURP targeting and CENP-A assembly on a synthetic human kinetochore.
    Bergmann JH; RodrĂ­guez MG; Martins NM; Kimura H; Kelly DA; Masumoto H; Larionov V; Jansen LE; Earnshaw WC
    EMBO J; 2011 Jan; 30(2):328-40. PubMed ID: 21157429
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assembly of additional heterochromatin distinct from centromere-kinetochore chromatin is required for de novo formation of human artificial chromosome.
    Nakashima H; Nakano M; Ohnishi R; Hiraoka Y; Kaneda Y; Sugino A; Masumoto H
    J Cell Sci; 2005 Dec; 118(Pt 24):5885-98. PubMed ID: 16339970
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CENP-C and CENP-I are key connecting factors for kinetochore and CENP-A assembly.
    Shono N; Ohzeki J; Otake K; Martins NM; Nagase T; Kimura H; Larionov V; Earnshaw WC; Masumoto H
    J Cell Sci; 2015 Dec; 128(24):4572-87. PubMed ID: 26527398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epigenetic engineering reveals a balance between histone modifications and transcription in kinetochore maintenance.
    Molina O; Vargiu G; Abad MA; Zhiteneva A; Jeyaprakash AA; Masumoto H; Kouprina N; Larionov V; Earnshaw WC
    Nat Commun; 2016 Nov; 7():13334. PubMed ID: 27841270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inactivation of a human kinetochore by specific targeting of chromatin modifiers.
    Nakano M; Cardinale S; Noskov VN; Gassmann R; Vagnarelli P; Kandels-Lewis S; Larionov V; Earnshaw WC; Masumoto H
    Dev Cell; 2008 Apr; 14(4):507-22. PubMed ID: 18410728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CENP-B box is required for de novo centromere chromatin assembly on human alphoid DNA.
    Ohzeki J; Nakano M; Okada T; Masumoto H
    J Cell Biol; 2002 Dec; 159(5):765-75. PubMed ID: 12460987
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human Artificial Chromosomes that Bypass Centromeric DNA.
    Logsdon GA; Gambogi CW; Liskovykh MA; Barrey EJ; Larionov V; Miga KH; Heun P; Black BE
    Cell; 2019 Jul; 178(3):624-639.e19. PubMed ID: 31348889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic and epigenetic effects on centromere establishment.
    Ling YH; Lin Z; Yuen KWY
    Chromosoma; 2020 Mar; 129(1):1-24. PubMed ID: 31781852
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How to build a centromere: from centromeric and pericentromeric chromatin to kinetochore assembly.
    Vos LJ; Famulski JK; Chan GK
    Biochem Cell Biol; 2006 Aug; 84(4):619-39. PubMed ID: 16936833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The CENP-A N-tail confers epigenetic stability to centromeres via the CENP-T branch of the CCAN in fission yeast.
    Folco HD; Campbell CS; May KM; Espinoza CA; Oegema K; Hardwick KG; Grewal SIS; Desai A
    Curr Biol; 2015 Feb; 25(3):348-356. PubMed ID: 25619765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.