These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 28688107)

  • 21. Further along the Road Less Traveled: AMBER ff15ipq, an Original Protein Force Field Built on a Self-Consistent Physical Model.
    Debiec KT; Cerutti DS; Baker LR; Gronenborn AM; Case DA; Chong LT
    J Chem Theory Comput; 2016 Aug; 12(8):3926-47. PubMed ID: 27399642
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ab initio protein structure prediction with force field parameters derived from water-phase quantum chemical calculation.
    Katagiri D; Fuji H; Neya S; Hoshino T
    J Comput Chem; 2008 Sep; 29(12):1930-44. PubMed ID: 18366016
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Iterative Optimization of Molecular Mechanics Force Fields from NMR Data of Full-Length Proteins.
    Li DW; Brüschweiler R
    J Chem Theory Comput; 2011 Jun; 7(6):1773-82. PubMed ID: 26596440
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Are AMBER Force Fields and Implicit Solvation Models Additive? A Folding Study with a Balanced Peptide Test Set.
    Robinson MK; Monroe JI; Shell MS
    J Chem Theory Comput; 2016 Nov; 12(11):5631-5642. PubMed ID: 27731628
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantum calculation of protein NMR chemical shifts based on the automated fragmentation method.
    Zhu T; Zhang JZ; He X
    Adv Exp Med Biol; 2015; 827():49-70. PubMed ID: 25387959
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Assessing the Current State of Amber Force Field Modifications for DNA.
    Galindo-Murillo R; Robertson JC; Zgarbová M; Šponer J; Otyepka M; Jurečka P; Cheatham TE
    J Chem Theory Comput; 2016 Aug; 12(8):4114-27. PubMed ID: 27300587
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chemical shifts in amino acids, peptides, and proteins: from quantum chemistry to drug design.
    Oldfield E
    Annu Rev Phys Chem; 2002; 53():349-78. PubMed ID: 11972012
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of Electrostatic Interactions in Binding of Peptides and Intrinsically Disordered Proteins to Their Folded Targets: 2. The Model of Encounter Complex Involving the Double Mutant of the c-Crk N-SH3 Domain and Peptide Sos.
    Yuwen T; Xue Y; Skrynnikov NR
    Biochemistry; 2016 Mar; 55(12):1784-800. PubMed ID: 26910732
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Assessing AMBER force fields for protein folding in an implicit solvent.
    Shao Q; Zhu W
    Phys Chem Chem Phys; 2018 Mar; 20(10):7206-7216. PubMed ID: 29480910
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Simulation of NMR data reveals that proteins' local structures are stabilized by electronic polarization.
    Tong Y; Ji CG; Mei Y; Zhang JZ
    J Am Chem Soc; 2009 Jun; 131(24):8636-41. PubMed ID: 19485377
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Systematic Differences between Current Molecular Dynamics Force Fields To Represent Local Properties of Intrinsically Disordered Proteins.
    Yu L; Li DW; Brüschweiler R
    J Phys Chem B; 2021 Jan; 125(3):798-804. PubMed ID: 33444020
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Using PC clusters to evaluate the transferability of molecular mechanics force fields for proteins.
    Okur A; Strockbine B; Hornak V; Simmerling C
    J Comput Chem; 2003 Jan; 24(1):21-31. PubMed ID: 12483672
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Accurate geometries for "Mountain pass" regions of the Ramachandran plot using quantum chemical calculations.
    Jiang Z; Biczysko M; Moriarty NW
    Proteins; 2018 Mar; 86(3):273-278. PubMed ID: 29314245
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fixed-Charge Atomistic Force Fields for Molecular Dynamics Simulations in the Condensed Phase: An Overview.
    Riniker S
    J Chem Inf Model; 2018 Mar; 58(3):565-578. PubMed ID: 29510041
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Calibration of force-field dependency in free energy landscapes of peptide conformations by quantum chemical calculations.
    Ono S; Kuroda M; Higo J; Nakajima N; Nakamura H
    J Comput Chem; 2002 Mar; 23(4):470-6. PubMed ID: 11908083
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chemical Shifts of the Carbohydrate Binding Domain of Galectin-3 from Magic Angle Spinning NMR and Hybrid Quantum Mechanics/Molecular Mechanics Calculations.
    Kraus J; Gupta R; Yehl J; Lu M; Case DA; Gronenborn AM; Akke M; Polenova T
    J Phys Chem B; 2018 Mar; 122(11):2931-2939. PubMed ID: 29498857
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Investigation of backbone dynamics and local geometry of bio-molecules using calculated NMR chemical shifts and anisotropies.
    Sternberg U; Witter R
    J Biomol NMR; 2019 Dec; 73(12):727-741. PubMed ID: 31646420
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Conformational dynamics of HIV-1 protease: a comparative molecular dynamics simulation study with multiple amber force fields.
    Meher BR; Kumar MV; Sharma S; Bandyopadhyay P
    J Bioinform Comput Biol; 2012 Dec; 10(6):1250018. PubMed ID: 22845837
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Toward Closing the Gap: Quantum Mechanical Calculations and Experimentally Measured Chemical Shifts of a Microcrystalline Lectin.
    Fritz M; Quinn CM; Wang M; Hou G; Lu X; Koharudin LMI; Polenova T; Gronenborn AM
    J Phys Chem B; 2017 Apr; 121(15):3574-3585. PubMed ID: 28001418
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Conformational Dynamics of Two Natively Unfolded Fragment Peptides: Comparison of the AMBER and CHARMM Force Fields.
    Chen W; Shi C; MacKerell AD; Shen J
    J Phys Chem B; 2015 Jun; 119(25):7902-10. PubMed ID: 26020564
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.