BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 28688132)

  • 21. Multiplex Gene Editing in Rice Using the CRISPR-Cpf1 System.
    Wang M; Mao Y; Lu Y; Tao X; Zhu JK
    Mol Plant; 2017 Jul; 10(7):1011-1013. PubMed ID: 28315752
    [No Abstract]   [Full Text] [Related]  

  • 22. CRISPR-Cpf1: A New Tool for Plant Genome Editing.
    Zaidi SS; Mahfouz MM; Mansoor S
    Trends Plant Sci; 2017 Jul; 22(7):550-553. PubMed ID: 28532598
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evolving Regulatory Landscape for Genome-Edited Plants.
    Zannoni L
    CRISPR J; 2019 Feb; 2():3-8. PubMed ID: 31021233
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Discovery of rice essential genes by characterizing a CRISPR-edited mutation of closely related rice MAP kinase genes.
    Minkenberg B; Xie K; Yang Y
    Plant J; 2017 Feb; 89(3):636-648. PubMed ID: 27747971
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion.
    Shimatani Z; Kashojiya S; Takayama M; Terada R; Arazoe T; Ishii H; Teramura H; Yamamoto T; Komatsu H; Miura K; Ezura H; Nishida K; Ariizumi T; Kondo A
    Nat Biotechnol; 2017 May; 35(5):441-443. PubMed ID: 28346401
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CRISPR-Cas12b enables efficient plant genome engineering.
    Ming M; Ren Q; Pan C; He Y; Zhang Y; Liu S; Zhong Z; Wang J; Malzahn AA; Wu J; Zheng X; Zhang Y; Qi Y
    Nat Plants; 2020 Mar; 6(3):202-208. PubMed ID: 32170285
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Creation of novel alleles of fragrance gene OsBADH2 in rice through CRISPR/Cas9 mediated gene editing.
    Ashokkumar S; Jaganathan D; Ramanathan V; Rahman H; Palaniswamy R; Kambale R; Muthurajan R
    PLoS One; 2020; 15(8):e0237018. PubMed ID: 32785241
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Decoding Sanger Sequencing Chromatograms from CRISPR-Induced Mutations.
    Xie X; Ma X; Liu YG
    Methods Mol Biol; 2019; 1917():33-43. PubMed ID: 30610626
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improvement of multiplex semi-nested PCR system for screening of rare mutations by high-throughput sequencing.
    Zhang Y; Chi X; Feng L; Wu X; Qi X
    Biotechniques; 2019 Dec; 67(6):294-298. PubMed ID: 31621390
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Advances and perspectives on the use of CRISPR/Cas9 systems in plant genomics research.
    Liu D; Hu R; Palla KJ; Tuskan GA; Yang X
    Curr Opin Plant Biol; 2016 Apr; 30():70-7. PubMed ID: 26896588
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Heritable transgene-free genome editing in plants by grafting of wild-type shoots to transgenic donor rootstocks.
    Yang L; Machin F; Wang S; Saplaoura E; Kragler F
    Nat Biotechnol; 2023 Jul; 41(7):958-967. PubMed ID: 36593415
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Novel CRISPR/Cas9 system assisted by fluorescence marker and pollen killer for high-efficiency isolation of transgene-free edited plants in rice.
    Yu D; Zhou T; Xu N; Sun X; Song S; Liu H; Sun Z; Lv Q; Chen J; Tan Y; Sheng X; Li L; Yuan D
    Plant Biotechnol J; 2024 Jun; 22(6):1649-1651. PubMed ID: 38299436
    [No Abstract]   [Full Text] [Related]  

  • 33. [Advances in application of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 system in stem cells research].
    Sun SJ; Huo JH; Geng ZJ; Sun XY; Fu XB
    Zhonghua Shao Shang Za Zhi; 2018 Apr; 34(4):253-256. PubMed ID: 29690746
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-throughput detection and screening of plants modified by gene editing using quantitative real-time polymerase chain reaction.
    Peng C; Wang H; Xu X; Wang X; Chen X; Wei W; Lai Y; Liu G; Godwin ID; Li J; Zhang L; Xu J
    Plant J; 2018 Aug; 95(3):557-567. PubMed ID: 29761864
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Simple CRISPR/Cas9 System for Multiplex Genome Editing in Rice.
    Wang C; Shen L; Fu Y; Yan C; Wang K
    J Genet Genomics; 2015 Dec; 42(12):703-6. PubMed ID: 26743988
    [No Abstract]   [Full Text] [Related]  

  • 36. Manipulating the Biosynthesis of Bioactive Compound Alkaloids for Next-Generation Metabolic Engineering in Opium Poppy Using CRISPR-Cas 9 Genome Editing Technology.
    Alagoz Y; Gurkok T; Zhang B; Unver T
    Sci Rep; 2016 Aug; 6():30910. PubMed ID: 27483984
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A CRISPR/Cas12a-Mediated Sensitive DNA Detection System for Gene-Edited Rice.
    Wang Z; Huang C; Wei S; Zhu P; Li Y; Fu W; Zhang Y
    J AOAC Int; 2023 May; 106(3):558-567. PubMed ID: 36847422
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Expanding the scope of genome editing with SpG and SpRY variants in rice.
    Ren J; Meng X; Hu F; Liu Q; Cao Y; Li H; Yan C; Li J; Wang K; Yu H; Wang C
    Sci China Life Sci; 2021 Oct; 64(10):1784-1787. PubMed ID: 33443621
    [No Abstract]   [Full Text] [Related]  

  • 39. Broadening the applicability of CRISPR/Cas9 in plants.
    Puchta H
    Sci China Life Sci; 2018 Jan; 61(1):126-127. PubMed ID: 29285717
    [No Abstract]   [Full Text] [Related]  

  • 40. Precise A·T to G·C Base Editing in the Rice Genome.
    Hua K; Tao X; Yuan F; Wang D; Zhu JK
    Mol Plant; 2018 Apr; 11(4):627-630. PubMed ID: 29476916
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.