These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

405 related articles for article (PubMed ID: 28688302)

  • 1. Effects of gait speed on the body's center of mass motion relative to the center of pressure during over-ground walking.
    Lu HL; Kuo MY; Chang CF; Lu TW; Hong SW
    Hum Mov Sci; 2017 Aug; 54():354-362. PubMed ID: 28688302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of belt speed on the body's center of mass motion relative to the center of pressure during treadmill walking.
    Lu HL; Lu TW; Lin HC; Hsieh HJ; Chan WP
    Gait Posture; 2017 Jan; 51():109-115. PubMed ID: 27744249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of body's center of mass motion relative to center of pressure between treadmill and over-ground walking.
    Lu HL; Lu TW; Lin HC; Chan WP
    Gait Posture; 2017 Mar; 53():248-253. PubMed ID: 28231557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Whole body balance control in Lenke 1 thoracic adolescent idiopathic scoliosis during level walking.
    Wu KW; Lu TW; Lee WC; Ho YT; Wang JH; Kuo KN; Wang TM
    PLoS One; 2020; 15(3):e0229775. PubMed ID: 32142524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of body's center of mass motion relative to center of pressure during uphill walking in the elderly.
    Hong SW; Leu TH; Wang TM; Li JD; Ho WP; Lu TW
    Gait Posture; 2015 Oct; 42(4):523-8. PubMed ID: 26386677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of long-term wearing of high-heeled shoes on the control of the body's center of mass motion in relation to the center of pressure during walking.
    Chien HL; Lu TW; Liu MW
    Gait Posture; 2014 Apr; 39(4):1045-50. PubMed ID: 24508016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of the motion of the body's center of mass in relation to the center of pressure during high-heeled gait.
    Chien HL; Lu TW; Liu MW
    Gait Posture; 2013 Jul; 38(3):391-6. PubMed ID: 23337731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Balance control and lower limb joint work in children with bilateral genu valgum during level walking.
    Wu KW; Lee WC; Ho YT; Wang TM; Kuo KN; Lu TW
    Gait Posture; 2021 Oct; 90():313-319. PubMed ID: 34564004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bilateral Asymmetry in Balance Control During Gait in Children with Treated Unilateral Developmental Dysplasia of the Hip.
    Lee WC; Lee PA; Chen TY; Tsai YL; Wang TM; Lu TW
    Gait Posture; 2022 Feb; 92():223-229. PubMed ID: 34871927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compromised balance control in older people with bilateral medial knee osteoarthritis during level walking.
    Lee PA; Wu KH; Lu HY; Su KW; Wang TM; Liu HC; Lu TW
    Sci Rep; 2021 Feb; 11(1):3742. PubMed ID: 33580161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in dynamic balance control in adults with obesity across walking speeds.
    Kim D; Lewis CL; Silverman AK; Gill SV
    J Biomech; 2022 Nov; 144():111308. PubMed ID: 36150320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of long-term Tai-Chi Chuan practice on whole-body balance control during obstacle-crossing in the elderly.
    Kuo CC; Chen SC; Chen TY; Ho TJ; Lin JG; Lu TW
    Sci Rep; 2022 Feb; 12(1):2660. PubMed ID: 35177707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Age and height effects on the center of mass and center of pressure inclination angles during obstacle-crossing.
    Huang SC; Lu TW; Chen HL; Wang TM; Chou LS
    Med Eng Phys; 2008 Oct; 30(8):968-75. PubMed ID: 18243037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carrying asymmetric loads while walking on an uneven surface.
    Wang J; Gillette JC
    Gait Posture; 2018 Sep; 65():39-44. PubMed ID: 30558944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Altered balance control in thoracic adolescent idiopathic scoliosis during obstructed gait.
    Wu KW; Lu TW; Lee WC; Ho YT; Huang TC; Wang JH; Wang TM
    PLoS One; 2020; 15(2):e0228752. PubMed ID: 32027721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of lateral weight transfer is associated with walking speed in individuals post-stroke.
    Hsiao H; Gray VL; Creath RA; Binder-Macleod SA; Rogers MW
    J Biomech; 2017 Jul; 60():72-78. PubMed ID: 28687151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinematics of center of mass and center of pressure predict friction requirement at shoe-floor interface during walking.
    Yamaguchi T; Yano M; Onodera H; Hokkirigawa K
    Gait Posture; 2013 Jun; 38(2):209-14. PubMed ID: 23218767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Leg Length Discrepancy: Dynamic Balance Response during Gait.
    Azizan NA; Basaruddin KS; Salleh AF; Sulaiman AR; Safar MJA; Rusli WMR
    J Healthc Eng; 2018; 2018():7815451. PubMed ID: 29983905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Motion of the whole body's center of mass when stepping over obstacles of different heights.
    Chou LS; Kaufman KR; Brey RH; Draganich LF
    Gait Posture; 2001 Feb; 13(1):17-26. PubMed ID: 11166550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comprehensive quantitative investigation of arm swing during walking at various speed and surface slope conditions.
    Hejrati B; Chesebrough S; Bo Foreman K; Abbott JJ; Merryweather AS
    Hum Mov Sci; 2016 Oct; 49():104-15. PubMed ID: 27367784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.