BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 28688357)

  • 1. Revealing chemophoric sites in organophosphorus insecticides through the MIA-QSPR modeling of soil sorption data.
    Daré JK; Silva CF; Freitas MP
    Ecotoxicol Environ Saf; 2017 Oct; 144():560-563. PubMed ID: 28688357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aug-MIA-QSPR modeling of the soil sorption of carboxylic acid herbicides.
    Freitas MR; Freitas MP; Macedo RL
    Bull Environ Contam Toxicol; 2014 Oct; 93(4):489-92. PubMed ID: 25134926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. QSPR modeling of octanol-water partition coefficient and organic carbon normalized sorption coefficient of diverse organic chemicals using Extended Topochemical Atom (ETA) indices.
    Pandey SK; Roy K
    Ecotoxicol Environ Saf; 2021 Jan; 208():111411. PubMed ID: 33080425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A simple approach to the prediction of soil sorption of organophosphorus pesticides.
    Muhire J; Li SS; Yin B; Mi JY; Zhai HL
    J Environ Sci Health B; 2021; 56(6):606-612. PubMed ID: 34162318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sorption and mobility of
    Cáceres T; Venkateswarlu K
    Environ Monit Assess; 2018 Feb; 190(3):109. PubMed ID: 29396599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Linear and non-linear relationships between soil sorption and hydrophobicity.
    Wen Y; Su LM; Qin WC; He J; Fu L; Zhang XJ; Zhao YH
    SAR QSAR Environ Res; 2012 Jan; 23(1-2):111-23. PubMed ID: 22150068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. QSAR analysis of soil sorption coefficients for polar organic chemicals: substituted anilines and phenols.
    Liu G; Yu J
    Water Res; 2005 May; 39(10):2048-55. PubMed ID: 15913706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An alternative approach for the use of water solubility of nonionic pesticides in the modeling of the soil sorption coefficients.
    dos Reis RR; Sampaio SC; de Melo EB
    Water Res; 2014 Apr; 53():191-9. PubMed ID: 24525068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformation-Independent QSPR Approach for the Soil Sorption Coefficient of Heterogeneous Compounds.
    Aranda JF; Garro Martinez JC; Castro EA; Duchowicz PR
    Int J Mol Sci; 2016 Aug; 17(8):. PubMed ID: 27527144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Partition, sorption and structure activity relation study of dialkoxybenzenes that modulate insect behavior.
    Ebrahimi P; Spooner J; Weinberg N; Plettner E
    Chemosphere; 2013 Sep; 93(1):54-60. PubMed ID: 23732011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative modeling of soil sorption for xenobiotic chemicals.
    Sabljić A
    Environ Health Perspect; 1989 Nov; 83():179-90. PubMed ID: 2695324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A topological substructural molecular design to predict soil sorption coefficients for pesticides.
    González MP; Helguera AM; Collado IG
    Mol Divers; 2006 May; 10(2):109-18. PubMed ID: 16710808
    [TBL] [Abstract][Full Text] [Related]  

  • 13. QSPR modelling of the soil sorption coefficient from training sets of different sizes.
    Olguin CJM; Sampaio SC; Dos Reis RR; Remor MB; Olguin CFA
    SAR QSAR Environ Res; 2019 May; 30(5):299-311. PubMed ID: 30982322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-parameter modeling of the soil sorption of acetanilide and triazine herbicide derivatives.
    Freitas MR; Matias SV; Macedo RL; Freitas MP; Venturin N
    Bull Environ Contam Toxicol; 2014 Feb; 92(2):143-7. PubMed ID: 24374777
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leaching and sorption of neonicotinoid insecticides and fungicides from seed coatings.
    Smalling KL; Hladik ML; Sanders CJ; Kuivila KM
    J Environ Sci Health B; 2018 Mar; 53(3):176-183. PubMed ID: 29286873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Absorption of polycyclic aromatic hydrocarbons to cellulose.
    Jonker MT
    Chemosphere; 2008 Jan; 70(5):778-82. PubMed ID: 17723239
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative structure-activity relationships for predicting soil-sediment sorption coefficients for organic chemicals.
    Doucette WJ
    Environ Toxicol Chem; 2003 Aug; 22(8):1771-88. PubMed ID: 12924577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of solid-liquid partition coefficients (K(d)) for diazinon, propetamphos and cis-permethrin: implications for sheep dip disposal.
    Cooke CM; Shaw G; Lester JN; Collins CD
    Sci Total Environ; 2004 Aug; 329(1-3):197-213. PubMed ID: 15262167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sorbed atrazine shifts into non-desorbable sites of soil organic matter during aging.
    Park JH; Feng Y; Cho SY; Voice TC; Boyd SA
    Water Res; 2004 Nov; 38(18):3881-92. PubMed ID: 15380978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling and prediction of soil sorption coefficients of non-ionic organic pesticides by molecular descriptors.
    Gramatica P; Corradi M; Consonni V
    Chemosphere; 2000 Sep; 41(5):763-77. PubMed ID: 10834380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.