These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 28688431)

  • 1. Dynamics of supercooled liquid and plastic crystalline ethanol: Dielectric relaxation and AC nanocalorimetry distinguish structural α- and Debye relaxation processes.
    Chua YZ; Young-Gonzales AR; Richert R; Ediger MD; Schick C
    J Chem Phys; 2017 Jul; 147(1):014502. PubMed ID: 28688431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of the shear-mechanical and dielectric relaxation processes in two monoalcohols close to the glass transition.
    Jakobsen B; Maggi C; Christensen T; Dyre JC
    J Chem Phys; 2008 Nov; 129(18):184502. PubMed ID: 19045409
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of dielectric and structural relaxations in glass-forming secondary amides.
    Wang LM; Richert R
    J Chem Phys; 2005 Aug; 123(5):054516. PubMed ID: 16108678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ideal mixing behavior of the debye process in supercooled monohydroxy alcohols.
    Wang LM; Richert R
    J Phys Chem B; 2005 May; 109(18):8767-73. PubMed ID: 16852040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nature of the Debye-Process in Monohydroxy Alcohols: 5-Methyl-2-Hexanol Investigated by Depolarized Light Scattering and Dielectric Spectroscopy.
    Gabriel J; Pabst F; Helbling A; Böhmer T; Blochowicz T
    Phys Rev Lett; 2018 Jul; 121(3):035501. PubMed ID: 30085796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics of glass-forming liquids. IX. Structural versus dielectric relaxation in monohydroxy alcohols.
    Wang LM; Richert R
    J Chem Phys; 2004 Dec; 121(22):11170-6. PubMed ID: 15634071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relaxation dynamics and ionic conductivity in a fragile plastic crystal.
    Bauer T; Köhler M; Lunkenheimer P; Loidl A; Angell CA
    J Chem Phys; 2010 Oct; 133(14):144509. PubMed ID: 20950019
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diluent effects on the Debye-type dielectric relaxation in viscous monohydroxy alcohols.
    Wang LM; Shahriari S; Richert R
    J Phys Chem B; 2005 Dec; 109(49):23255-62. PubMed ID: 16375290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Debye-type dielectric relaxation in glass-forming 3-methylthio-1-hexanol.
    Gao Y; Bi D; Li X; Liu R; Tian Y; Wang LM
    J Chem Phys; 2013 Jul; 139(2):024503. PubMed ID: 23862949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Debye type dielectric relaxation and the glass transition of alcohols.
    Wang LM; Richert R
    J Phys Chem B; 2005 Jun; 109(22):11091-4. PubMed ID: 16852352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calorimetric versus kinetic glass transitions in viscous monohydroxy alcohols.
    Wang LM; Tian Y; Liu R; Richert R
    J Chem Phys; 2008 Feb; 128(8):084503. PubMed ID: 18315057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dielectric relaxation of long-chain glass-forming monohydroxy alcohols.
    Gao Y; Tu W; Chen Z; Tian Y; Liu R; Wang LM
    J Chem Phys; 2013 Oct; 139(16):164504. PubMed ID: 24182046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular mobility of amorphous S-flurbiprofen: a dielectric relaxation spectroscopy approach.
    Rodrigues AC; Viciosa MT; Danède F; Affouard F; Correia NT
    Mol Pharm; 2014 Jan; 11(1):112-30. PubMed ID: 24215236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular mobility in the supercooled and glassy states of nizatidine and perphenazine.
    Sailaja U; Shahin Thayyil M; Krishna Kumar NS; Govindaraj G; Ngai KL
    Eur J Pharm Sci; 2017 Mar; 99():147-151. PubMed ID: 27916696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultraslow dielectric relaxation process in supercooled polyhydric alcohols.
    Yomogida Y; Minoguchi A; Nozaki R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 1):041510. PubMed ID: 16711812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of glass-forming liquids. XII. Dielectric study of primary and secondary relaxations in ethylcyclohexane.
    Mandanici A; Huang W; Cutroni M; Richert R
    J Chem Phys; 2008 Mar; 128(12):124505. PubMed ID: 18376941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Debye Process and β-Relaxation in 1-Propanol Probed by Dielectric Spectroscopy and Depolarized Dynamic Light Scattering.
    Gabriel J; Pabst F; Blochowicz T
    J Phys Chem B; 2017 Sep; 121(37):8847-8853. PubMed ID: 28872311
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Observation of low heat capacities for vapor-deposited glasses of indomethacin as determined by AC nanocalorimetry.
    Kearns KL; Whitaker KR; Ediger MD; Huth H; Schick C
    J Chem Phys; 2010 Jul; 133(1):014702. PubMed ID: 20614979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aging of the Johari-Goldstein relaxation in the glass-forming liquids sorbitol and xylitol.
    Yardimci H; Leheny RL
    J Chem Phys; 2006 Jun; 124(21):214503. PubMed ID: 16774419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Primary and secondary relaxations in supercooled eugenol and isoeugenol at ambient and elevated pressures: dependence on chemical microstructure.
    Kaminska E; Kaminski K; Paluch M; Ngai KL
    J Chem Phys; 2006 Apr; 124(16):164511. PubMed ID: 16674150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.