These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 28688907)

  • 1. Face identity recognition in simulated prosthetic vision is poorer than previously reported and can be improved by caricaturing.
    Irons JL; Gradden T; Zhang A; He X; Barnes N; Scott AF; McKone E
    Vision Res; 2017 Aug; 137():61-79. PubMed ID: 28688907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Caricaturing faces to improve identity recognition in low vision simulations: How effective is current-generation automatic assignment of landmark points?
    McKone E; Robbins RA; He X; Barnes N
    PLoS One; 2018; 13(10):e0204361. PubMed ID: 30286112
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Caricaturing as a general method to improve poor face recognition: Evidence from low-resolution images, other-race faces, and older adults.
    Dawel A; Wong TY; McMorrow J; Ivanovici C; He X; Barnes N; Irons J; Gradden T; Robbins R; Goodhew SC; Lane J; McKone E
    J Exp Psychol Appl; 2019 Jun; 25(2):256-279. PubMed ID: 30321022
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving face identity perception in age-related macular degeneration via caricaturing.
    Lane J; Rohan EMF; Sabeti F; Essex RW; Maddess T; Barnes N; He X; Robbins RA; Gradden T; McKone E
    Sci Rep; 2018 Oct; 8(1):15205. PubMed ID: 30315188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Caricaturing can improve facial expression recognition in low-resolution images and age-related macular degeneration.
    Lane J; Robbins RA; Rohan EMF; Crookes K; Essex RW; Maddess T; Sabeti F; Mazlin JL; Irons J; Gradden T; Dawel A; Barnes N; He X; Smithson M; McKone E
    J Vis; 2019 Jun; 19(6):18. PubMed ID: 31215978
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distortions in the brain? ERP effects of caricaturing familiar and unfamiliar faces.
    Kaufmann JM; Schweinberger SR
    Brain Res; 2008 Sep; 1228():177-88. PubMed ID: 18634766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Face recognition in simulated prosthetic vision: face detection-based image processing strategies.
    Wang J; Wu X; Lu Y; Wu H; Kan H; Chai X
    J Neural Eng; 2014 Aug; 11(4):046009. PubMed ID: 24921713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The faces you remember: caricaturing shape facilitates brain processes reflecting the acquisition of new face representations.
    Kaufmann JM; Schweinberger SR
    Biol Psychol; 2012 Jan; 89(1):21-33. PubMed ID: 21925235
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recognition of similar objects using simulated prosthetic vision.
    Hu J; Xia P; Gu C; Qi J; Li S; Peng Y
    Artif Organs; 2014 Feb; 38(2):159-67. PubMed ID: 24033534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new theoretical approach to improving face recognition in disorders of central vision: face caricaturing.
    Irons J; McKone E; Dumbleton R; Barnes N; He X; Provis J; Ivanovici C; Kwa A
    J Vis; 2014 Feb; 14(2):. PubMed ID: 24534882
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Face identity matching is selectively impaired in developmental prosopagnosia.
    Fisher K; Towler J; Eimer M
    Cortex; 2017 Apr; 89():11-27. PubMed ID: 28189665
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural correlates of facilitations in face learning by selective caricaturing of facial shape or reflectance.
    Itz ML; Schweinberger SR; Schulz C; Kaufmann JM
    Neuroimage; 2014 Nov; 102 Pt 2():736-47. PubMed ID: 25173417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recognition of objects in simulated irregular phosphene maps for an epiretinal prosthesis.
    Lu Y; Wang J; Wu H; Li L; Cao X; Chai X
    Artif Organs; 2014 Feb; 38(2):E10-20. PubMed ID: 24117959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facial identification in very low-resolution images simulating prosthetic vision.
    Chang MH; Kim HS; Shin JH; Park KS
    J Neural Eng; 2012 Aug; 9(4):046012. PubMed ID: 22766585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High and low performers differ in the use of shape information for face recognition.
    Kaufmann JM; Schulz C; Schweinberger SR
    Neuropsychologia; 2013 Jun; 51(7):1310-9. PubMed ID: 23562837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptation to Phosphene Parameters Based on Multi-Object Recognition Using Simulated Prosthetic Vision.
    Xia P; Hu J; Peng Y
    Artif Organs; 2015 Dec; 39(12):1038-45. PubMed ID: 25912967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Image processing strategies based on saliency segmentation for object recognition under simulated prosthetic vision.
    Li H; Su X; Wang J; Kan H; Han T; Zeng Y; Chai X
    Artif Intell Med; 2018 Jan; 84():64-78. PubMed ID: 29129481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of anticaricaturing vs. caricaturing and their neural correlates elucidate a role of shape for face learning.
    Schulz C; Kaufmann JM; Walther L; Schweinberger SR
    Neuropsychologia; 2012 Aug; 50(10):2426-34. PubMed ID: 22750120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Configuration-based processing of phosphene pattern recognition for simulated prosthetic vision.
    Guo H; Qin R; Qiu Y; Zhu Y; Tong S
    Artif Organs; 2010 Apr; 34(4):324-30. PubMed ID: 20420615
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance of complex visual tasks using simulated prosthetic vision via augmented-reality glasses.
    Ho E; Boffa J; Palanker D
    J Vis; 2019 Nov; 19(13):22. PubMed ID: 31770773
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.