BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 2868895)

  • 1. Rhodamine 6G inhibits the matrix-catalyzed processing of precursors of rat-liver mitochondrial proteins.
    Kuzela S; Joste V; Nelson BD
    Eur J Biochem; 1986 Feb; 154(3):553-7. PubMed ID: 2868895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Import and processing of cytochrome b-c1 complex subunits in isolated hepatoma ascites cells. Inhibition by Rhodamine 6G.
    Kolarov J; Nelson BD
    Eur J Biochem; 1984 Oct; 144(2):387-92. PubMed ID: 6092071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cytochrome b is necessary for the effective processing of core protein I and the iron-sulfur protein of complex III in the mitochondria.
    Sen K; Beattie DS
    Arch Biochem Biophys; 1986 Nov; 251(1):239-49. PubMed ID: 3024574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport of carbamyl phosphate synthetase I and ornithine transcarbamylase into mitochondria. Inhibition by rhodamine 123 and accumulation of enzyme precursors in isolated hepatocytes.
    Morita T; Mori M; Ikeda F; Tatibana M
    J Biol Chem; 1982 Sep; 257(18):10547-50. PubMed ID: 7107622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Processing of precursor proteins by plant mitochondria.
    Whelan J; O'Mahony P; Harmey MA
    Arch Biochem Biophys; 1990 Jun; 279(2):281-5. PubMed ID: 2140932
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coupling between proteolytic processing and translocation of the precursor of the F1-ATPase beta-subunit during its import into mitochondria of intact cells.
    Kolarov J; Hatalová I
    FEBS Lett; 1984 Dec; 178(1):161-4. PubMed ID: 6238846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rhodamine 6G, inhibitor of both H+-ejections from mitochondria energized with ATP and with respiratory substrates.
    Higuti T; Niimi S; Saito R; Nakasima S; Ohe T; Tani I; Yoshimura T
    Biochim Biophys Acta; 1980 Dec; 593(2):463-7. PubMed ID: 7236646
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rhodamine 123 inhibits bioenergetic function in isolated rat liver mitochondria.
    Modica-Napolitano JS; Weiss MJ; Chen LB; Aprille JR
    Biochem Biophys Res Commun; 1984 Feb; 118(3):717-23. PubMed ID: 6200108
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis, intracellular transport and processing of mitochondrial urea cycle enzymes.
    Mori M; Miura S; Morita T; Takiguchi M; Tatibana M
    Adv Enzyme Regul; 1983; 21():121-32. PubMed ID: 6545081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of in vivo and in vitro exposure to rhodamine dyes on mitochondrial function of mouse embryos.
    Ranganathan S; Hood RD
    Teratog Carcinog Mutagen; 1989; 9(1):29-37. PubMed ID: 2567067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rhodamine 123 inhibits import of rat liver mitochondrial transhydrogenase.
    Lubin IM; Wu LN; Wuthier RE; Fisher RR
    Biochem Biophys Res Commun; 1987 Apr; 144(1):477-83. PubMed ID: 3579920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transport of proteins to the mitochondrial intermembrane space: the 'sorting' domain of the cytochrome c1 presequence is a stop-transfer sequence specific for the mitochondrial inner membrane.
    van Loon AP; Schatz G
    EMBO J; 1987 Aug; 6(8):2441-8. PubMed ID: 2822393
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biosynthesis of four rat liver mitochondrial acyl-CoA dehydrogenases: in vitro synthesis, import into mitochondria, and processing of their precursors in a cell-free system and in cultured cells.
    Ikeda Y; Keese SM; Fenton WA; Tanaka K
    Arch Biochem Biophys; 1987 Feb; 252(2):662-74. PubMed ID: 3813556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Precursor proteins are transported into mitochondria in the absence of proteolytic cleavage of the additional sequences.
    Zwizinski C; Neupert W
    J Biol Chem; 1983 Nov; 258(21):13340-6. PubMed ID: 6226666
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rhodamine 123 as a probe of transmembrane potential in isolated rat-liver mitochondria: spectral and metabolic properties.
    Emaus RK; Grunwald R; Lemasters JJ
    Biochim Biophys Acta; 1986 Jul; 850(3):436-48. PubMed ID: 2873836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Import of the iron-sulfur protein of the cytochrome b.c1 complex into yeast mitochondria.
    Fu W; Japa S; Beattie DS
    J Biol Chem; 1990 Sep; 265(27):16541-7. PubMed ID: 2168894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Basis for the selective cytotoxicity of rhodamine 123.
    Modica-Napolitano JS; Aprille JR
    Cancer Res; 1987 Aug; 47(16):4361-5. PubMed ID: 2886218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transport of proteins into mitochondria: translocational intermediates spanning contact sites between outer and inner membranes.
    Schleyer M; Neupert W
    Cell; 1985 Nov; 43(1):339-50. PubMed ID: 2866845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro transport of F1-ATPase beta-subunit into mitochondria of Zajdela hepatoma and rat liver.
    Kuzela S; Luciaková K; Lakota J
    Neoplasma; 1985; 32(6):673-8. PubMed ID: 2868422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The TF1-ATPase and ATPase activities of assembled alpha 3 beta 3 gamma, alpha 3 beta 3 gamma delta, and alpha 3 beta 3 gamma epsilon complexes are stimulated by low and inhibited by high concentrations of rhodamine 6G whereas the dye only inhibits the alpha 3 beta 3, and alpha 3 beta 3 delta complexes.
    Paik SR; Yokoyama K; Yoshida M; Ohta T; Kagawa Y; Allison WS
    J Bioenerg Biomembr; 1993 Dec; 25(6):679-84. PubMed ID: 8144495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.