BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 28689100)

  • 1. Synthesis and characterization of amino acid-functionalized calcium phosphate nanoparticles for siRNA delivery.
    Bakan F; Kara G; Cokol Cakmak M; Cokol M; Denkbas EB
    Colloids Surf B Biointerfaces; 2017 Oct; 158():175-181. PubMed ID: 28689100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced endosomal escape of siRNA-incorporating hybrid nanoparticles from calcium phosphate and PEG-block charge-conversional polymer for efficient gene knockdown with negligible cytotoxicity.
    Pittella F; Zhang M; Lee Y; Kim HJ; Tockary T; Osada K; Ishii T; Miyata K; Nishiyama N; Kataoka K
    Biomaterials; 2011 Apr; 32(11):3106-14. PubMed ID: 21272932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Silencing of survivin and cyclin B1 through siRNA-loaded arginine modified calcium phosphate nanoparticles for non-small-cell lung cancer therapy.
    Kara G; Parlar A; Cakmak MC; Cokol M; Denkbas EB; Bakan F
    Colloids Surf B Biointerfaces; 2020 Dec; 196():111340. PubMed ID: 32956996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Target-specific delivery of siRNA by stabilized calcium phosphate nanoparticles using dopa-hyaluronic acid conjugate.
    Lee MS; Lee JE; Byun E; Kim NW; Lee K; Lee H; Sim SJ; Lee DS; Jeong JH
    J Control Release; 2014 Oct; 192():122-30. PubMed ID: 24995950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systemic delivery of siRNA by hyaluronan-functionalized calcium phosphate nanoparticles for tumor-targeted therapy.
    Qiu C; Wei W; Sun J; Zhang HT; Ding JS; Wang JC; Zhang Q
    Nanoscale; 2016 Jul; 8(26):13033-44. PubMed ID: 27314204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. F127/Calcium phosphate hybrid nanoparticles: a promising vector for improving siRNA delivery and gene silencing.
    Qin L; Sun Y; Liu P; Wang Q; Han B; Duan Y
    J Biomater Sci Polym Ed; 2013; 24(15):1757-66. PubMed ID: 23746331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stabilized calcium phosphate hybrid nanocomposite using a benzoxaborole-containing polymer for pH-responsive siRNA delivery.
    Zhou Q; Wang Y; Xiang J; Piao Y; Zhou Z; Tang J; Liu X; Shen Y
    Biomater Sci; 2018 Nov; 6(12):3178-3188. PubMed ID: 30327807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PEGylated carboxymethyl chitosan/calcium phosphate hybrid anionic nanoparticles mediated hTERT siRNA delivery for anticancer therapy.
    Xie Y; Qiao H; Su Z; Chen M; Ping Q; Sun M
    Biomaterials; 2014 Sep; 35(27):7978-91. PubMed ID: 24939077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stabilized calcium phosphate nano-aggregates using a dopa-chitosan conjugate for gene delivery.
    Lee K; Oh MH; Lee MS; Nam YS; Park TG; Jeong JH
    Int J Pharm; 2013 Mar; 445(1-2):196-202. PubMed ID: 23328681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Layer-by-layer nanoparticles as an efficient siRNA delivery vehicle for SPARC silencing.
    Tan YF; Mundargi RC; Chen MH; Lessig J; Neu B; Venkatraman SS; Wong TT
    Small; 2014 May; 10(9):1790-8. PubMed ID: 24510544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation and characterization of nonaarginine-modified chitosan nanoparticles for siRNA delivery.
    Park S; Jeong EJ; Lee J; Rhim T; Lee SK; Lee KY
    Carbohydr Polym; 2013 Jan; 92(1):57-62. PubMed ID: 23218265
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transfection system of amino-functionalized calcium phosphate nanoparticles: in vitro efficacy, biodegradability, and immunogenicity study.
    Mostaghaci B; Susewind J; Kickelbick G; Lehr CM; Loretz B
    ACS Appl Mater Interfaces; 2015 Mar; 7(9):5124-33. PubMed ID: 25692576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioreducible Cross-Linked Hyaluronic Acid/Calcium Phosphate Hybrid Nanoparticles for Specific Delivery of siRNA in Melanoma Tumor Therapy.
    Zhou Z; Li H; Wang K; Guo Q; Li C; Jiang H; Hu Y; Oupicky D; Sun M
    ACS Appl Mater Interfaces; 2017 May; 9(17):14576-14589. PubMed ID: 28393529
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facile preparation of calcium phosphate nanoparticles for siRNA delivery: effect of synthesis conditions on physicochemical and biological properties.
    Zhang M; Lin W; Lin B; Huang Y; Lin H; Qul J
    J Nanosci Nanotechnol; 2012 Dec; 12(12):9029-36. PubMed ID: 23447954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cumulative directional calcium gluing between phosphate and silicate: A facile, robust and biocompatible strategy for siRNA delivery by amine-free non-positive vector.
    Choi E; Lee J; Kwon IC; Lim DK; Kim S
    Biomaterials; 2019 Jul; 209():126-137. PubMed ID: 31034981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monodispersed brush-like conjugated polyelectrolyte nanoparticles with efficient and visualized siRNA delivery for gene silencing.
    Jiang R; Lu X; Yang M; Deng W; Fan Q; Huang W
    Biomacromolecules; 2013 Oct; 14(10):3643-52. PubMed ID: 24040909
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanostructured silicate substituted calcium phosphate (NanoSiCaPs) nanoparticles - Efficient calcium phosphate based non-viral gene delivery systems.
    Shekhar S; Roy A; Hong D; Kumta PN
    Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():486-95. PubMed ID: 27612739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell Type-Specific Delivery of RNAi by Ligand-Functionalized Curdlan Nanoparticles: Balancing the Receptor Mediation and the Charge Motivation.
    Wu Y; Cai J; Han J; Baigude H
    ACS Appl Mater Interfaces; 2015 Sep; 7(38):21521-8. PubMed ID: 26345600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Maximizing RNA Loading for Gene Silencing Using Porous Silicon Nanoparticles.
    Tieu T; Dhawan S; Haridas V; Butler LM; Thissen H; Cifuentes-Rius A; Voelcker NH
    ACS Appl Mater Interfaces; 2019 Jul; 11(26):22993-23005. PubMed ID: 31252458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Colonic gene silencing using siRNA-loaded calcium phosphate/PLGA nanoparticles ameliorates intestinal inflammation in vivo.
    Frede A; Neuhaus B; Klopfleisch R; Walker C; Buer J; Müller W; Epple M; Westendorf AM
    J Control Release; 2016 Jan; 222():86-96. PubMed ID: 26699423
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.