BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 28689100)

  • 21. Gene delivery using calcium phosphate nanoparticles: Optimization of the transfection process and the effects of citrate and poly(l-lysine) as additives.
    Khan MA; Wu VM; Ghosh S; Uskoković V
    J Colloid Interface Sci; 2016 Jun; 471():48-58. PubMed ID: 26971068
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rigid nanoparticle-based delivery of anti-cancer siRNA: challenges and opportunities.
    Wang Z; Liu G; Zheng H; Chen X
    Biotechnol Adv; 2014; 32(4):831-43. PubMed ID: 24013011
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Calcium phosphate nanoparticles with an asymmetric lipid bilayer coating for siRNA delivery to the tumor.
    Li J; Yang Y; Huang L
    J Control Release; 2012 Feb; 158(1):108-14. PubMed ID: 22056915
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Self-assembled biodegradable micellar nanoparticles of amphiphilic and cationic block copolymer for siRNA delivery.
    Sun TM; Du JZ; Yan LF; Mao HQ; Wang J
    Biomaterials; 2008 Nov; 29(32):4348-55. PubMed ID: 18715636
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A mini review of biodegradable calcium phosphate nanoparticles for gene delivery.
    Xie Y; Chen Y; Sun M; Ping Q
    Curr Pharm Biotechnol; 2013; 14(10):918-25. PubMed ID: 24372244
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Amino acid synergetic effect on structure, morphology and surface properties of biomimetic apatite nanocrystals.
    Palazzo B; Walsh D; Iafisco M; Foresti E; Bertinetti L; Martra G; Bianchi CL; Cappelletti G; Roveri N
    Acta Biomater; 2009 May; 5(4):1241-52. PubMed ID: 19083277
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of antibody-modified chitosan nanoparticles for the targeted delivery of siRNA across the blood-brain barrier as a strategy for inhibiting HIV replication in astrocytes.
    Gu J; Al-Bayati K; Ho EA
    Drug Deliv Transl Res; 2017 Aug; 7(4):497-506. PubMed ID: 28315051
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tumor-specific delivery of siRNA using supramolecular assembly of hyaluronic acid nanoparticles and 2b RNA-binding protein/siRNA complexes.
    Choi KM; Jang M; Kim JH; Ahn HJ
    Biomaterials; 2014 Aug; 35(25):7121-32. PubMed ID: 24854094
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hydroxyapatite nanoparticles modified by branched polyethylenimine are effective non-viral vectors for siRNA transfection of hepatoma cells in vitro.
    Xu XL; Yang HY; Ou B; Lin SD; Wu H; He W; Jiang QC; Luo BM; Li GP
    Int J Oncol; 2015 May; 46(5):2138-42. PubMed ID: 25760143
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stability, Intracellular Delivery, and Release of siRNA from Chitosan Nanoparticles Using Different Cross-Linkers.
    Raja MA; Katas H; Jing Wen T
    PLoS One; 2015; 10(6):e0128963. PubMed ID: 26068222
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Intracellular cleavable poly(2-dimethylaminoethyl methacrylate) functionalized mesoporous silica nanoparticles for efficient siRNA delivery in vitro and in vivo.
    Lin D; Cheng Q; Jiang Q; Huang Y; Yang Z; Han S; Zhao Y; Guo S; Liang Z; Dong A
    Nanoscale; 2013 May; 5(10):4291-301. PubMed ID: 23552843
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Charge reversible calcium phosphate lipid hybrid nanoparticle for siRNA delivery.
    Cai RQ; Liu DZ; Cui H; Cheng Y; Liu M; Zhang BL; Mei QB; Zhou SY
    Oncotarget; 2017 Jun; 8(26):42772-42788. PubMed ID: 28514759
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Design of a Biocompatible Hydroxyapatite-Based Nanovehicle for Efficient Delivery of Small Interference Ribonucleic Acid into Mouse Embryonic Stem Cells.
    Zantye P; Shende S; Ramanan SR; Talukdar I; Kowshik M
    Mol Pharm; 2021 Mar; 18(3):796-806. PubMed ID: 33464088
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Receptor-mediated delivery of therapeutic RNA by peptide functionalized curdlan nanoparticles.
    Ganbold T; Han S; Hasi A; Baigude H
    Int J Biol Macromol; 2019 Apr; 126():633-640. PubMed ID: 30572048
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Systemic siRNA delivery using biocompatible calcium phosphate nanoparticles.
    Park K
    J Control Release; 2010 Mar; 142(3):295. PubMed ID: 20149829
    [No Abstract]   [Full Text] [Related]  

  • 36. Silica nanoparticles and polyethyleneimine (PEI)-mediated functionalization: a new method of PEI covalent attachment for siRNA delivery applications.
    Buchman YK; Lellouche E; Zigdon S; Bechor M; Michaeli S; Lellouche JP
    Bioconjug Chem; 2013 Dec; 24(12):2076-87. PubMed ID: 24180511
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Amiloride-enhanced gene transfection of octa-arginine functionalized calcium phosphate nanoparticles.
    Vanegas Sáenz JR; Tenkumo T; Kamano Y; Egusa H; Sasaki K
    PLoS One; 2017; 12(11):e0188347. PubMed ID: 29145481
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Block copolymer-coated calcium phosphate nanoparticles sensing intracellular environment for oligodeoxynucleotide and siRNA delivery.
    Kakizawa Y; Furukawa S; Kataoka K
    J Control Release; 2004 Jun; 97(2):345-56. PubMed ID: 15196761
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis and Characterization of Aptamer-Targeted SNALPs for the Delivery of siRNA.
    Wilner SE; Levy M
    Methods Mol Biol; 2016; 1380():211-24. PubMed ID: 26552829
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Calcium phosphate nanoparticles for the transfection of cells.
    Kovtun A; Heumann R; Epple M
    Biomed Mater Eng; 2009; 19(2-3):241-7. PubMed ID: 19581719
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.